Giáo án lớp 12 môn Giải tích - Tiết 55 đến Tiết 60

Giáo án lớp 12 môn Giải tích - Tiết 55 đến Tiết 60

 1. Kiến thức Nắm được hpgh bởi đồ thị hàm số y = f(x) và trục Ox, các đt x = a,

x = b. Hp gh bởi các đồ thị hàm số y = f(x), y = g(x) và các đg thẳng x = a, x = b.

 2. Kỹ năng: - Áp dụng được công thức tính diện tích hình phẳng

 3.Tư duy, Thái độ: tích cực, chủ động, năng động, sáng tạo.

 - Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.

II. CHUẨN BỊ:

 1. giáo viên :-Hệ thống câu hỏi, Phương tiện dạy học

 2. học sinh : -Hoàn thành các nhiệm vụ ở nhà.

 -Đọc qua nội dung bài mới ở nhà.

 

doc 12 trang Người đăng haha99 Lượt xem 955Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án lớp 12 môn Giải tích - Tiết 55 đến Tiết 60", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 18/01/2010
Tiết 55	 ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN 
I. MỤC TIÊU
 1. Kiến thức Nắm được hpgh bởi đồ thị hàm số y = f(x) và trục Ox, các đt x = a, 
x = b. Hp gh bởi các đồ thị hàm số y = f(x), y = g(x) và các đg thẳng x = a, x = b.
 2. Kỹ năng: - Áp dụng được công thức tính diện tích hình phẳng
 3.Tư duy, Thái độ: tích cực, chủ động, năng động, sáng tạo. 
 - Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
II. CHUẨN BỊ: 
 1. giáo viên :-Hệ thống câu hỏi, Phương tiện dạy học
 2. học sinh : -Hoàn thành các nhiệm vụ ở nhà.
 -Đọc qua nội dung bài mới ở nhà.
III. PHƯƠNG PHÁP: - Gợi mở vấn đáp và các hoạt động.
IV. TIẾN TRÌNH: 
Ổn định lớp :
Kiểm tra bài cũ : Tính 
Bài mới
HĐ1:Công thức tính diện tích hìnhphẳng gh bởi đường cong và trục hoành
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
I. Tính diện tích hình phẳng
1. Hp giới hạn bởi đg cong và trục Ox
Dthp giới hạn bởi đths y = f(x) liên tục, trục Ox và các đường thẳng x = a, x = b được tính theo công thức: 
- Cho học sinh tiến hành hoạt động 1 SGK
- GV đặt vấn đề nghiên cứu cách tính diện tích hp giới hạn bởi đồ thị hàm số y = f(x), trục Ox và các đường thẳng x = a, x = b.
- GV giới thiệu 3 trường hợp:
+ Nếu y = f(x) lt và ko âm trên . Diện tích S của hp gh bởi đồ thị của f(x), trục Ox và các đt x=a, x = b là: 
+ Nếu hàm y = f(x) 0 trên . Diện tích 
+Tổng quát: 
- Gv đưa ra ví dụ 1 SGK, hướng dẫn học sinh thực hiện
- Tiến hành hoạt động 1
Ví dụ 1: SGK
Ví dụ 2: Tính diện tích hình phẳng giới hạn bởi Parabol và trục hoành Ox .
- Hoành độ giao điểm của Parabol và trục hoành Ox là nghiệm của phương trình . 
HĐ2: Tiếp cận công thức tính diện tích hình phẳng giới hạn bởi 2 đường cong 
2.Hình phẳng gh bởi hai đường cong
- GV đặt vấn đề nghiên cứu cách tính diện tích hp giới hạn bởi đths y = f1(x), và y = f2(x) và hai đường thẳng x = a, x = b
- Từ công thức tính diện tích của hình thang cong suy ra được dthp trên được tính bởi công thức 
Cho hai hàm số y = f1(x) và y = f2(x) liên tục trên . Gọi D là hình phẳng giới hạn bởi đồ thị hai hàm số đó và các đường thẳng x = a, x = b trong hình 54 thì diện tích của hình phẳng được tính theo công thức 
Lưu ý: Để tính S ta thực hiện theo 2 cách
Cách 1: Chia khoảng, xét dấu biểu thức f1(x) – f2(x) rồi khử dấu trị tuyệt đối
Cách 2: Tìm nghiệm của phương trình f1(x) – f2(x) = 0. Giả sử ptrình có 2 nghiệm c, d (c < d) thuộc thì:
- Gv hướng dẫn HS giải vd2, vd3 SGK
+ Phân nhóm, yêu cầu Hs thực hiện
- Theo dõi, thực hiện
- Hs tiến hành giải dưới sự định hướng của giáo viên.
- Theo dõi hình vẽ
- Hs lĩnh hội và ghi nhớ
- Hs thảo luận theo nhóm và tiến hành giải. 
Hoành độ giao điểm của 2 đường đã cho là nghiệm của ptrình 
x2 + 1 = 3 – x 
x2 + x – 2 = 0
 4. Củng cố: -Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức. 5. Bài về nhà: BT 1, 2, 3. 
Ngày soạn: 18/01/2010
Tiết 56	 ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN 
 I. MỤC TIÊU
 1. Kiến thức - Nắm được công thức thể tích của một vật thể nói chung
 - Nắm được công thức thể tích khối tròn xoay 
 2. Kỹ năng: - Áp dụng được công thức thể tính tích vật thể
 3.Tư duy, Thái độ: tích cực, chủ động, năng động, sáng tạo. 
 - Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
 II. CHUẨN BỊ: 
 1. giáo viên :-Hệ thống câu hỏi, Phương tiện dạy học
 2. học sinh : -Hoàn thành các nhiệm vụ ở nhà.
 -Đọc qua nội dung bài mới ở nhà.
III. PHƯƠNG PHÁP: - Gợi mở vấn đáp và các hoạt động.
IV. TIẾN TRÌNH: 
1.Ổn định lớp :
2.Kiểm tra bài cũ : Tính diện tích hình phẳng giới hạn bởi (P) và .
3.Bài mới
HĐ1: Hướng dẫn học sinh chiếm lĩnh công thức tính thể tích vật thể
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
II. Tính thể tích
1. Thể tích của vật thể
Một vật thể V giới hạn bởi 2 mp (P) và (Q). Chọn hệ trục toạ độ có Ox vuông góc với (P) và (Q). Gọi a, b (a < b) là giao điểm của (P) và (Q) với Ox. Gọi một mp tùy ý vuông góc với Ox tại x () cắt V theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên . Khi đó thể tích của vật thể V được tính bởi công thức
- Giáo viên đặt vấn đề như SGK và thông báo công thức tính thể tich vật thể (treo hình vẽ đã chuẩn bị lên bảng)
- Hướng dẫn Hs giải vd4 SGK
- Hs giải quyết vấn đề đưa ra dưới sự định hướng của giáo viên
- Thực hiện theo sự hướng dẫn của giáo viên
HĐ2: Hướng dẫn Hs hình thành công thức thể tích khối chóp và khối chóp cụt
2. Thể tích khối chóp và khối chóp cụt
* Thể tích khối chóp:
* Thể tích khối chóp cụt:
- Xét khối nón (khối chóp) đỉnh A và diện tích đáy là S, đường cao AI = h. Tính diện tích S(x) của thiết diện của khối chóp (khối nón) cắt bởi mp song song với đáy? Tính tích phân trên.
- Đối với khối chóp cụt, nón cụt giới hạn bởi mp đáy có hoành độ AI0 = h0 và AI1 = h1 (h0 < h1). Gọi S0 và S1 lần lượt là diện tích 2 mặt đáy tương ứng. Viết công thức tính thể tích của khối chóp cụt này.
- Củng cố công thức:
+ Giáo viên phát phiếu học tập số 3: Tính thể tích của vật thể nằm giữa 2 mp x = 3 và x = 5, biết rằng thiết diện của vật thể bị cắt bởi mp vuông góc với Ox tại điểm có hoành độ x () là một hình chữ nhật có độ dài các cạnh là 2x, 
Yêu cầu Hs làm việc theo nhóm
- Gv yêu cầu Hs trình bày 
- Đánh giá bài làm và chính xác hoá kết quả
Do đó, thể tích của khối chóp (khối nón) là:
- Hs tiến hành giải quyết vấn đề đưa ra dưới sự định hướng của giáo viên.
Thể tích của khối chóp cụt (nón cụt) là: 
- Hs giải bài tập dưới sự định hướng của giáo viên theo nhóm 
- Hs tính được diện tích của thiết diện là:
- Do đó thể tích của vật thể là: 
- Thực hiện theo yêu cầu của giáo viên
- Các nhóm nhận xét bài làm trên bảng
 4. Củng cố: - Giáo viên hướng dẫn học sinh ôn lại kiến thức trọng tâm của bài học
 -Nhắc lại công thức tính thể tích của một vật thể. 
 5. Bài về nhà: BT 4, 5, 6 
Ngày soạn: 25/01/2010
Tiết 57	 ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN 
 I. MỤC TIÊU
 1. Kiến thức - Nắm được công thức thể tích khối tròn xoay, công thức của khối nón, khối nón cụt, khối trụ tròn xoay trong trường hợp vật thể quay xung quanh trục Ox
 2. Kỹ năng: - Áp dụng được công thức thể tính tích vật thể
 3.Tư duy, Thái độ: tích cực, chủ động, năng động, sáng tạo. 
 - Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
II. CHUẨN BỊ: 
 1. giáo viên :-Hệ thống câu hỏi, Phương tiện dạy học
 2. học sinh : -Hoàn thành các nhiệm vụ ở nhà.
 -Đọc qua nội dung bài mới ở nhà.
III. PHƯƠNG PHÁP: - Gợi mở vấn đáp và các hoạt động.
IV. TIẾN TRÌNH: 
1.Ổn định lớp :
2.Kiểm tra bài cũ : Nêu các CT tính diện tích hình phẳng và CT tính thể tích? 
3.Bài mới
HĐ1: Hướng dẫn học sinh chiếm lĩnh công thức tính thể tích khối tròn xoay
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
III. Thể tích khối tròn xoay
1. Thể tích khối tròn xoay
- Giáo viên nhắc lại khái niệm khối tròn xoay: Một mp quay quanh một trục nào đó tạo nên khối tròn xoay
+ Gv định hướng Hs tính thể tích khối tròn xoay (treo bảng phụ trình bày hình vẽ 60SGK). Xét bài toán cho hàm số y = f(x) liên tục và không âm trên . Hình phẳng giới hạn bởi đồ thị y = f(x), trục hoành và đường thẳng x = a, x = b quay quanh trục Ox tạo nên khối tròn xoay.
Tính diện tích S(x) của thiết diện khối tròn xoay cắt bởi mp vuông góc với trục Ox? Viết công thức tính thể tích của khối tròn xoay này.
2. Thể tích khối cầu bán kính R
- Thiết diện khối tròn xoay cắt bởi mp vuông góc với Ox là hình tròn có bán kính y = f(x) nên diện tích của thiết diện là:
Suy ra thể tích của khối tròn xoay là:
HĐ2: Củng cố công thức
 - Gv hướng dẫn Hs giải vd5, vd6 SGK
Ví dụ: Tính thể tích vật tròn xoay tạo thành khi quay hình phẳng (H) xác định bởi các đường sau quanh trục Ox
a) , y = 0, x = 0 và x = 3
b) , y = 0, x = , x = 
- Chia nhóm học sinh, yêu cầu Hs làm việc theo nhóm để giải vdụ
+ Đối với câu a) Gv hướng dẫn Hs vẽ hình cho dễ hình dung
+ Đánh giá bài làm và chính xác hoá kết quả
- Dưới sự định hướng của giáo viên Hs hình thành công thức tính thể tích khối cầu và giải vd5 SGK
- Tiến hành làm việc theo nhóm. 
a)
b)
- Đại diện các nhóm lên trình bày và nhận xét bài làm của nhóm khác
 4. Củng cố: - Giáo viên hướng dẫn học sinh ôn lại kiến thức trọng tâm của bài học
 -Nhắc lại công thức tính thể tích của một vật thể. 
 5. Bài về nhà: BT Ôn tập chương III 
Ngày soạn : 25/01/2010 
Tiết:58	 BÀI TẬP ỨNG DỤNG TÍCH PHÂN 
I. MỤC TIÊU:
 1.Về kiến thức:- Nắm được công thức tính diện tích,thể tích nhờ tích phân
 -Biết được một số dạng đồ thị của những hàm số quen thuộc để chuyển bài toán tính diện tích và thể tích theo công thức tính ở dạng tích phân
 2.Về kỹ năng:-Biết tính được diện tích một số hình phẳng,thể tích một số khối nhờ tp
 3.Về thái độ: -Cẩn thận chính xác. Biết qui lạ về quen, 
 -Có tinh thần hợp tác trong học tập
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
 1.Giáo viên:Giáo án,bảng phụ,phiếu học tập
 2.Học sinh :Kiến thức về công thức tính tích phân,vở bài tập đã chuẩn bị ở nhà
III. PHƯƠNG PHÁP: Gợi mở,vấn đáp,giải quyết vấn đề,hoạt động nhóm
IV. TIẾN TRÌNH TỔ CHỨC BÀI DẠY:
 1. Ổn định tổ chức:
 2. Kiểm tra bài cũ:kiểm tra đan xen vào bài tập
 3. Bài mới:
HĐ1:Baì toán tìm diện tích giới hạn bởi một đường cong và trục hoành 
Hoạt động của GV
 Hoạt động của HS
+Nêu công thức tính diện tích giới hạn bởi đồ thị hàm số y=f(x),liên tục ,trục hoành và 2 đường x=a,x=b
+Tính S giới hạn bởi
y =x3-x,trục ox,đthẳng x=-1,x=1
+Gv cho hs lên bảng giải,hs dưới lớp tự giải để nhận xét
 S=
=
 =1/2
 HĐ2:Bài toán tìm diện tích giới hạn bởi hai đường cong 
Hoạt động của GV
Hoạt động của HS
+Nêu công thức tính diện tích giới hạn bởi đồ thi hàm số y=f(x),y=g(x) và 2 đường thẳng x=a,x=b
 S=
+Gv cho hs tính câu 1a ở sgk
+GVvẽ hình minh hoạ trên bảng phụ để hs thây rõ
+Gv cho hs nhận xét và cho điểm
 +Gv gợi ý hs giải bài tập 1b,c tương tự
PTHĐGĐ : x2=x+2 
S=
 =9/2(đvdt)
HĐ3:Bài toán liên quan đến tìm diện tích hai đường cong 
Hoạt động của GV
Hoạt động của HS
+GV gợi ý hs giải câu 2 ở sgk
+GVvẽ hình minh hoạ trên bảng phụ để hs thấy rõ
 +Gv cho hs nhận xét
 Pttt:y-5=4(x-2) y=4x-3
S=
 ==8/3(đvdt)
 HĐ4: Bài toán liên quan đến tính thể tích khối tròn xoay 
Hoạt động của GV
 Hoạt động của HS
+Gv gợi ý hs xem hình vẽ dẫn dắt hs tính được thể tích khối tròn xoay
 +Gv gợi ý hs tìm GTLN của V theo 
 +Gv gợi ý đặt t= cos với t
 Btập 5(sgk)
a. V=
 =
 b.MaxV()= 
4.Củng cố. Học sinh cần nắm vững công thức tính diện tích và thể tích khối tròn xoay đã học để giải các bài toán tính diện tích và thể tích 
5. Bài về nhà: Học sinh về nhà xem lại các bài tạp đã giải và giải các bài tập 319-324 trang 158-159 ở sách bài tập
Ngày soạn : 02/02/2010 
Tiết:59	BÀI TẬP ỨNG DỤNG TÍCH PHÂN
I. MỤC TIÊU:
 1.Về kiến thức:- Nắm được công thức tính diện tích,thể tích nhờ tích phân
 -Biết được một số dạng đồ thị của những hàm số quen thuộc để chuyển bài 
 toán tính diện tích và thể tích theo công thức tính ở dạng tích phân
 2.Về kỹ năng:-Biết tính được diện tích một số hình phẳng,thể tích một số khối nhờ tp
 3.Về thái độ: -Cẩn thận chính xác. Biết quy lạ về quen -Có tinh thần hợp tác trong học tập
II. CHUẨN BỊ 
 1. Giáo viên:Giáo án,bảng phụ,phiếu học tập
 2. Học sinh :Kiến thức về công thức tính tích phân,vở bài tập đã chuẩn bị ở nhà
III. PHƯƠNG PHÁP: Gợi mở,vấn đáp,giải quyết vấn đề,hoạt động nhóm
IV. TIẾN TRÌNH TỔ CHỨC BÀI DẠY:
 1. Ổn định tổ chức:
 2. Kiểm tra bài cũ:kiểm tra đan xen vào bài tập
 3. Bài mới
 HĐ1: Bài toán tính thể tích khối tròn xoay
Hoạt động của GV
Hoạt động của HS
+Nêu công thức tính thể tích khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường
y =f(x); y=0;x=a;x=b
quay quanh trục ox
 +Gv cho hs giải bài tập 4a
+Gv gợi ý hs giải bài4c tương tự
 V=
* Tính thể tích khối tròn xoay sinh ra bởi
a. y =1-x2 ;y=0 
b. y =cosx ;y=0 ;x= 0 ;x= 
 +Hs vận dụng lên bảng trình bày
a. PTHĐGĐ
1-x2=x=1hoăc x=-1
 V==
b. V== 
 HĐ2: Bài toán liên quan đến tính thể tích khối tròn xoay
Hoạt động của GV
Hoạt động của HS
+Gv gợi ý hs xem hình vẽ dẫn dắt hs tính được thể tích khối tròn xoay
 +Gv gợi ý hs tìm GTLN của V theo 
 +Gv gợi ý đặt t= cos với t
 Btập 5(sgk)
a. V=
 =
 b.MaxV()= 
 +Hs lâp được công thức theo hướng dẫn của gv
+Hs tính được diện tích tam giác vuông OMP.Sau đó áp dụng công thức tính thể tích
+Hs nêu cách tìm GTLN và áp dung 
 HĐ3:Gv cho học sinh giải bài tập theo nhóm bài toán về thể tích khối tròn xoay
Hoạt động của GV
Hoạt động của HS
+Gv phát phiếu hoc tập cho hs giải theo nhóm
 +Gv cho các nhóm nhận xét sau đó đánh giá tổng kết
 +Gv treo kết qủa ở bảng phụ
 a.
b.
c.
d.
4.Củng cố. Học sinh cần nắm vững công thức tính diện tích và thể tích khối tròn xoay đã học để giải các bài toán tính diện tích và thể tích 
5. Bài về nhà: Học sinh về nhà xem lại các bài tạp đã giải và giải các bài tập 319-324 trang 158-159 ở sách bài tập
 * Phiếu học tập 1:Tính diện tích hình phẳng giới hạn bởi các đường
 a. y =x2-2x+2 và y =-x2-x+3
 b. y=x3 ;y =2-x2 và x=0
 c. y =x2-4x+3 và trục 0x
 d. y2 =6x và x2+y2=16
 *Phiếu học tập 2:Tính thể tích các khối tròn xoay khi quay hình phẳng xác định bởi
 a.y=2x-x2 ;y=0
 b.y=sinx;y=0;x=0;x=
 c. y=lnx;y=0;x=1;x=2
 d. y=x2;y=2x quay quanh trục ox
 Ngày soạn : 03/02/2010 
 Tiết: 60
ÔN TẬP CHƯƠNG III.
I. MỤC TIÊU:
 1. Kiến thức : -Hệ thống kiến thức chương 3 và các dạng bài cơ bản trong chương
 2. Kĩ năng: -Củng cố, nâng cao và rèn luyện kỹ năng tính tích phân và ứng dụng tính tích phân để tìm diện tích hình phẳng, thể tích các vật thể tròn xoay.
 3. Tư duy, thái độ: Giáo dục tính cẩn thận, chặt chẽ, logic. 
II. CHUẨN BỊ:
 1. Giáo viên : Soạn bài, chuẩn bị bảng phụ hệ thống hoá lại các kiến thức cơ bản của chương và xem lại giáo án trước giờ lên lớp.
 2. Học sinh: Soạn bài và giải bài tập trước khi đến lớp
III. PHƯƠNG PHÁP: +Gợi mở nêu vấn đề kết hợp với hoạt động nhóm.
IV. TIẾN TRÌNH:
 1/.Ổn định t ổ ch ức
 2/.Kểm tra bài cũ: -Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên từng khoảng. Nêu phương pháp tính nguyên hàm
 3/.Bài m ới:
Hoạt động của GV
Hoạt động của HS
HĐ1:Tìm nguyên hàm của hàm số( Áp dụng các công thức trong bảng các nguyên hàm).
+Giáo viên ghi đề bài tập trên bảng và chia nhóm:(Tổ 1,2 làm câu 1a; Tổ 3,4 làm câu 1b: trong thời gian 3 phút).
+Cho học sinh xung phong lên bảng trình bày lời giải 
Bài 1.Tìm nguyên hàm của hàm số:
a/.f(x)= sin4x. cos22x.
+Học sinh tiến hành thảo luận và lên bảng trình bày.
f(x)= sin4x()
=.
ĐS: 
.
b/.
.
HĐ 2: Sử dụng phương pháp đổi biến số vào bài toán tìm nguyên hàm.
+Yêu cầu học sinh nhắc lại phương pháp đổi biến số.
+Giáo viên gọi học sinh đứng tại chỗ nêu ý tưởng lời giải và lên bảng trình bày lời giải.
+Đối với biểu thức dưới dấu tích phân có chứa căn, thông thường ta làm gì?.
+(sinx+cosx)2, ta biến đổi như thế nào để có thể áp dụng được công thức nguyên hàm.
*Giáo viên gợi ý học sinh đổi biến số.
Bài 2.Tính:
a/..
+Học sinh nêu ý tưởng:
Ta có:
==.
ĐS:.
b/. Đặt t= x3+5
hoặc đặt t= 
c/.
(sinx+cosx)2 =1+2sinx.cosx =1+siu2x
hoặc: 2.
hoặc: 2.ĐS:.
HĐ 3:Sử dụng phương pháp nguyên hàm từng phần vào giải toán.
+Hãy nêu công thức nguyên hàm từng phần.
+Ta đặt u theo thứ tự ưu tiên nào.
+Cho học sinh xung phong lên bảng trình bày lời giải.
HĐ 4: Sử dụng phương pháp đồng nhất các hệ số để tìm nguyên hàm của hàm số phân thức và tìm hằng số C.
+yêu cầu học sinh nhắc lại phương pháp tìm các hệ số A,B.
+Nhắc lại cách tìm nguyên hàm của hàm số
+Giáo viên hướng dẫn lại cho học sinh.
Bài 3.Tính:
ĐS:(x-2)cosx-sinx+C.
Bài 4: Tìm một nguyên hàm F(x) của f(x)= biết F(4)=5.
+=.
+Học sinh lên bảng trình bày lời giải.
Đồng nhất các hệ số tìm được A=B= 1/3.
ĐS: F(x)=.
4/.Củng cố: -Yêu cầu học sinh nhắc lại phương pháp tìm nguyên hàm của một số hàm số thường gặp.
5/.Bài tập về nhà: Giáo viên hướng dẫn học sinh làm một số bài tập còn lại về nhà cho học sinh.

Tài liệu đính kèm:

  • docgiao an 12 ban KHCB.doc