1. Về kiến thức:
+ Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương .
+Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực .
2. Về kỹ năng :
+ Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa .
3. Về tư duy và thái độ :
+Từ khái niệm luỹ thừa với số nguyên dương xây dựng khái niệm luỹ thừa với số mũ thực.
+Rèn luyện tư duy logic, khả năng mở rộng , khái quát hoá .
II. Chuẩn bị của giáo viên và học sinh :
+Giáo viên : Giáo án , bảng phụ , phiếu học tập .
+Học sinh :SGK và kiến thức về luỹ thừa đã học ở cấp 2 .
Chương II: H ÀM SỐ LUỸ THỪA, HÀM SỐ MŨ Tiết 21 - 22 §1. LUỸ THỪA Ngày soạn: 28/08/2009 I. Mục tiêu : 1. Về kiến thức: + Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương . +Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực . 2. Về kỹ năng : + Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa . 3. Về tư duy và thái độ : +Từ khái niệm luỹ thừa với số nguyên dương xây dựng khái niệm luỹ thừa với số mũ thực. +Rèn luyện tư duy logic, khả năng mở rộng , khái quát hoá . II. Chuẩn bị của giáo viên và học sinh : +Giáo viên : Giáo án , bảng phụ , phiếu học tập . +Học sinh :SGK và kiến thức về luỹ thừa đã học ở cấp 2 . III. Phương pháp : +Phối hợp nhiều phương pháp nhằm phát huy tính tích cực của học sinh +Phương pháp chủ đạo : Gợi mở nêu vấn đề . IV. Tiến trình bài học : Ổn định lớp : Kiểm tra bài cũ: Câu hỏi 1 : Tính Câu hỏi 2 : Nhắc lại định nghĩa luỹ thừa bậc n của a (n) 3.Bài mới : Tiết 21 Hoạt động 1 : Hình thành khái niệm luỹ thừa . HĐTP 1 : Tiếp cận định nghĩa luỹ thừa với số mũ nguyên . Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng Câu hỏi 1 :Với m,n =? (1) =? =? (2) Câu hỏi 2 :Nếu m<n thì công thức (2) còn đúng không ? Ví dụ : Tính ? -Giáo viên dẫn dắt đến công thức : -Giáo viên khắc sâu điều kiện của cơ số ứng với từng trường hợp của số mũ -Tính chất. -Đưa ra ví dụ cho học sinh làm - Phát phiếu học tập số 1 để thảo luận . -Củng cố,dặn dò. +Trả lời. , +A = - 2 +Nhận phiếu học tập số 1 và trả lời. I.Khái niện luỹ thừa : 1.Luỹ thừa với số mũ nguyên : Cho n là số nguyên dương. n thừa số Với a0: Trong biểu thức am , ta gọi a là cơ số, số nguyên m là số mũ. CHÚ Ý : không có nghĩa. Luỹ thừa với số mũ nguyên có các tính chất tương tự của luỹ thừa với số mũ nguyên dương Ví dụ1 : Tính giá trị của biểu thức HĐTP 2 :Dựa vào đồ thị biện luận số nghiệm của pt xn = b -Treo bảng phụ : Đồ thị của hàm số y = x3 và đồ thị của hàm số y = x4 và đường thẳng y = b CH1:Dựa vào đồ thị biện luận theo b số nghiệm của pt x3 = b và x4 = b ? -GV nêu dạng đồ thị hàm số y = x2k+1 và y = x2k CH2:Biện luận theo b số nghiệm của pt xn =b Dựa vào đồ thị hs trả lời x3 = b (1) Với mọi b thuộc R thì pt (1) luôn có nghiệm duy nhất x4=b (2) Nếu b<0 thì pt (2) vô nghiêm Nếu b = 0 thì pt (2) có nghiệm duy nhất x = 0 Nếu b>0 thì pt (2) có 2 nghiệm phân biệt đối nhau . -HS suy nghĩ và trả lời 2.Phương trình : a)Trường hợp n lẻ : Với mọi số thực b, phương trình có nghiệm duy nhất. b)Trường hợp n chẵn : +Với b < 0, phương trình vô nghiệm +Với b = 0, phương trình có một nghiệm x = 0 ; +Với b > 0, phương trình có 2 nghiệm đối nhau . HĐTP3:Hình thành khái niệm căn bậc n - Nghiệm nếu có của pt xn = b, với n2 được gọi là căn bậc n của b CH1: Có bao nhiêu căn bậc lẻ của b ? CH2: Có bao nhiêu căn bậc chẵn của b ? -GV tổng hợp các trường hợp. Chú ý cách kí hiệu Ví dụ : Tính ? CH3: Từ định nghĩa chứng minh : = -Đưa ra các tính chất căn bậc n . -Ví dụ : Rút gọn biểu thức a) b) +Củng cố,dặn dò. +Bài tập trắc nghiệm. +Hết tiết 2. HS dựa vào phần trên để trả lời . HS vận dụng định nghĩa để chứng minh. Tương tự, học sinh chứng minh các tính chất còn lại. Theo dõi và ghi vào vở HS lên bảng giải ví dụ 3.Căn bậc n : a)Khái niệm : Cho số thực b và số nguyên dương n (n2). Số a được gọi là căn bậc n của b nếu an = b. Từ định nghĩa ta có : Với n lẻ và bR:Có duy nhất một căn bậc n của b, kí hiệu là Với n chẵn và b<0: Không tồn tại căn bậc n của b; Với n chẵn và b=0: Có một căn bậc n của b là số 0; Với n chẵn và b>0: Có hai căn trái dấu, kí hiệu giá trị dương là , còn giá trị âm là . b)Tính chất căn bậc n : khi n lẻ khi n chẵn Tiết 22 HĐTP4: Hình thành khái niệm luỹ thừa với số mũ hữu tỉ -Với mọi a>0,mZ,n luôn xác định .Từ đó GV hình thành khái niệm luỹ thừa với số mũ hữu tỉ. -Ví dụ : Tính ? -Phát phiếu học tập số 2 cho học sinh thảo luận Học sinh giải ví dụ Học sinh thảo luận theo nhóm và trình bày bài giải 4.Luỹ thừa với số mũ hữu tỉ Cho số thực a dương và số hữu tỉ , trong đó Luỹ thừa của a với số mũ r là ar xác định bởi HĐTP5: Hình thành khái niệm lũy thừa với số mũ vô tỉ Cho a>0, là số vô tỉ đều tồn tại dãy số hữu tỉ (rn) có giới hạn là và dãy () có giới hạn không phụ thuộc vào việc chọn dãy số (rn). Từ đó đưa ra định nghĩa. Học sinh theo dõi và ghi chép. 5.Luỹ thừa với số mũ vô tỉ: SGK Chú ý: 1= 1, R Hoạt động 2: Tính chất của lũy thừa với số mũ thực: HĐTP1: - Nhắc lại tính chất của lũy thừa với số mũ nguyên dương. - Giáo viên đưa ra tính chất của lũy thừa với số mũ thực, giống như tính chất của lũy thừa với số mũ nguyên dương -Bài tập trắc nghiệm. Học sinh nêu lại các tính chất. II. Tính chất của luỹ thừa với số mũ thực: SGK Nếu a > 1 thì kck Nếu a < 1thì kck HĐTP2: Giải các ví dụ: 4.Củng cố: +Khái niệm: nguyên dương , có nghĩa a. hoặc = 0 , có nghĩa . số hữu tỉ không nguyên hoặc vô tỉ , có nghĩa . +Các tính chất chú ý điều kiện. +Bài tập về nhà:-Làm các bài tập SGK trang 55,56. 5. Bài tập về nhà 1. Tính giá trị biểu thức: 2. Tính giá trị biểu thức: với a > 0,b > 0, Tiết 23 LUYỆN TẬP Ngày soạn : 02/09/2009 I. Mục tiêu : + Về kiến thức : Nắm được định nghĩa lũy thừa với số mũ nguyên , căn bậc n ,lũy thừ với số mũ hữu tỉ + Về kỹ năng : Biết cách áp dụng các tính chất của lũy thừa với số mũ thực để giải toán + Về tư duy thái độ : Rèn luyện tính tự giác luyện tập để khắc sâu kiến thức đã học II. Chuẩn bị của giáo viên và học sinh : + Giáo viên : Giáo án , phiếu học tập , bảng phụ + Học sinh :Chuẩn bị bài tập III. Phương pháp : Đàm thoại – Vấn đáp IV. Tiến trình bài học : 1/ Ổn định tổ chức 2/ Kiểm tra bài cũ 3/ Bài mới : Hoạt động 1 : Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Các em dùng máy tính bỏ túi tính các bài toán sau + Kiểm tra lại kết quả bằng phép tính +Gọi học sinh lên giải +Cho học sinh nhận xét bài làm của bạn + Giáo viên nhận xét , kết luận + Cả lớp cùng dùng máy ,tính các câu bài 1 + 1 học sinh lên bảng trình bày lời giải Bài 1 : Tính a/ b/ c/ Hoạt động 2 : + Nhắc lại định nghĩa lũy thừa với số mũ hữu tỉ +Vận dụng giải bài 2 + Nhận xét + Nêu phương pháp tính + Sử dụng tính chất gì ? + Viết mỗi hạng tử về dạng lũy thừa với số mũ hữu tỉ + Tương tự đối với câu c/,d/ + Học sinh lên bảng giải + Nhân phân phối + T/c : am . an = am+n + Bài 2 : Tính a/ b/ c/ d/ Bài 3 : a/ b/ c/ d/ Hoạt động 3 : + Gọi hs giải miệng tại chỗ + Nhắc lại tính chất a > 1 0 < a < 1 + Gọi hai học sinh lên bảng trình bày lời giải + Học sinh trả lời x > y x < y Bài 4: a) 2-1 , 13,75 , b) 980 , 321/5 , Bài 5: CMR a) b) 4) Củng cố toàn bài : 5) Hướng dẫn học bài ở nhà và ra bài tập về nhà : a. Tính giá trị của biểu thức sau: A = (a + 1)-1 + (b + 1)-1 khi a = và b = b. Rút gọn : Tiết 24 - 25 §2. HÀM SỐ LUỸ THỪA Ngày soạn: 08/09/2009 I) Mục tiêu - Về kiến thức : Nắm được khái niệm hàm số luỹ thừa , tính được đạo hàm cuả hàm số luỹ thừa va khảo sát hàm số luỹ thừa -Về kĩ năng : Thành thạo các bước tìm tập xác định , tính đạo hàm và các bước khảo sát hàm số luỹ thừa - Về tư duy , thái độ: Biết nhận dạng baì tập, Cẩn thận,chính xác II) Chuẩn bị Giáo viên :Giáo án , bảng phụ ,phiếu học tập Học sinh : ôn tập kiên thức,sách giáo khoa. III) Phương pháp : Hoạt động nhóm + vấn đáp + nêu và giải quyết vấn đề IV) Tiến trình bài học 1) Ổn định lớp : 2) Kiểm tra bài cũ Nhắc lại các quy tắc tính đạo hàm 3) Bài mới: Tiết 24 Hoạt động 1: Khái niệm Hoạt động của giáo viên Hoạt động của sinh Nội dung ghi bảng Thế nào là hàm số luỹ thừa , cho vd minh hoạ?. - Giáo viên cho học sinh cách tìm txđ của hàm số luỹ thừa cho ở vd ;a bất kỳ . -Kiểm tra , chỉnh sửa Trả lời. - Phát hiện tri thức mới - Ghi bài Giải vd I)Khái niệm : Hàm số R ; được gọi là hàm số luỹ thừa Vd : * Chú ý Tập xác định của hàm số luỹ thừa tuỳ thuộc vào giá trị của - nguyên dương ; D=R + + a không nguyên; D = (0;+) VD2 : Tìm TXĐ của các hàm số Hoạt động 2: Đạo hàm của HSố luỹ thừa Nhắc lai quy tắc tính đạo hàm của hàm số - Dẫn dắt đưa ra công thức tương tự - Khắc sâu cho hàm số công thức tính đạo hàm của hàm số hợp - Cho vd khắc sâu kiến thức cho hàm số - Theo dõi , chình sữa Trả lời kiến thức cũ - ghi bài - ghi bài - chú ý - làm vd II) Đạo hàm cuả hàm số luỹ thừa Vd3: *Chú ý: VD4: Tiết 25 : Khảo sát hàm số luỹ thừa - Giáo viên nói sơ qua khái niệm tập khảo sát - Hãy nêu lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số bất kỳ - Chỉnh sửa - Chia lớp thành 2 nhóm gọi đại diện lên khảo sát hàm số : ứng với0 - Sau đó giáo viên chỉnh sửa , tóm gọn vào nội dung bảng phụ. - H: em có nhận xét gì về đồ thị của hàm số - Giới thiệu đồ thị của một số thường gặp : -Hoạt động HS Vd3 SGK, sau đó cho VD yêu cầu học sinh khảo sát -Học sinh lên bảng giải - Hãy nêu các tính chất của hàm số luỹ thừa trên - Dựa vào nội dung bảng phụ - Chú ý - Trả lời các kiến thức cũ - Đại diện 2 nhóm lên bảng khảo sát theo trình tự các bước đã biết - ghi bài - chiếm lĩnh trị thức mới - TLời : (luôn luôn đi qua điểm (1;1) -Chú ý -Nắm lại các baì làm khảo sát -Theo dõi cho ý kiến nhận xét -Nêu tính chất - Nhận xét III) Khảo sát hàm số luỹ thừa * Chú ý : khi khảo sát hàm số luỹ thừa với số mũ cụ thể , ta phải xét hàm số đó trên toàn bộ TXĐ của nó Vd : Khảo sát sự biến thiên và vẽ đồ thi hàm số - - Sự biến thiên Hàm số luôn nghịch biến trênD TC : ; Đồ thị có tiệm cận ngang là trục hoành,tiệm cận đứng là trục tung BBT : x - + - y + 0 Đồ thị: 4) Củng cố - Nhắc lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số và các hàm số của nó . - Khảo sát sự biến thiên và đồ thị hàm số 5> Dặn dò : - Học lý thuyết - Làm các bài tập Bài tập 1) Tìm tập xác định của các hàm số sau : a) b) 2) Tính đạo hàm cua hàm số sau : a) b) Tiết 26 -27 §3. LÔGARIT Ngày soạn: 08/09/2009 I) Mục tiêu: 1) Về kiến thức : - Biết khái niệm lôgarit cơ số a (a > 0, a1) của một số dương - Biết các tính chất của logarit (so sánh hai lôgarit cùng cơ số, qui tắc tính lôgarit, đổi cơ số lôgarit) - Biết các khái niệm lôgarit thập phân, số e và lôgarit tự nhiên 2) Về kỹ năng: - Biết vận dụng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản - Biết vận dụng các tính chất của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit 3) Về tư duy và thái độ: - Tích cực tham gia vào bài học có tinh thần hợp tác - Biết qui lạ về quen. Rèn luyện tư duy lôgic II) Chuẩn bị của GV và HS GV: Giáo án, phiếu học tập HS: SGK, giải các bài tập về nhà và đọc qua nội dung bài mới ở nhà III) Phương pháp : Gợi mở, vấn đáp, hoạt động nhóm IV) Tiến trìnnh bài học: Ổn định: Kiểm tra bài cũ : Câu hỏi 1: Phát biểu khái niệm hàm số lũy thừa Câu hỏi ... d) Tiết 35 - 36 §6. BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT Ngày soạn: 08/10/2009 I/ Mục tiêu: 1/ Về kiến thức: Nắm được cách giải các bpt mũ, bpt logarit dạng cơ bản, đơn giản.Qua đógiải được các bpt mũ,bpt logarit cơ bản , đơn giản 2/Về kỉ năng: Vận dụng thành thạo tính đơn điệu của hàm số mũ ,logarit dể giải các bptmũ, bpt loga rit cơ bản, đơn giản 3/ Về tư duy và thái độ: kỹ năng lô gic, biết tư duy mỡ rộng bài toán, học nghiêm túc, hoạt động tích cực II/ Chuân bị của giáo viên và học sinh: +Giáo viên: bảng phụ, phiếu học tập +Học sinh: kiến thức về tính đơn điệu hàm số mũ, logarit và bài đọc trước III/Phương pháp: Gợi mở vấn đáp-hoạt động nhóm IV/ Tiến trình bài học: 1/ Ổn định tổ chức: ½ phút 2/ Kiẻm tra bài cũ 1/ Nêu tính đơn điệu hàm số mũ y = ax ( a> 0, a) và vẽ đồ thị hàm số y = 2x 2/ Nêu tính đơn điệu hàm số y = loga x ( a.>0, a, x>0 ) và tìm tập xác định của hàm số y = log2 (x2 -1) 3/ Bài mới : Tiết 35: Bất phương trình mũ HĐ1: Nắm được cách giải bpt mũ cơ bản Hoạt động giáo viên Hoạt động học sinh Ghi bảng -Gọi học sinh nêu dạng pt mũ cơ bản đã học - Gợi cho HS thấy dạng bpt mũ cơ bản (thay dấu = bởi dấu bđt) -Dùng bảng phụ về đồ thị hàm số y = ax và đt y = b(b>0,b) H1: hãy nhận xét sự tương giao 2 đồ thị trên * Xét dạng: ax > b H2: khi nào thì x> loga b và x < loga b - Chia 2 trường hợp: a>1 , 0<a GV hình thành cách giải trên bảng -1 HS nêu dạng pt mũ + HS theo dõi và trả lời: b>0 :luôn có giao điểm b: không có giaođiểm -HS suy nghĩ trả lời -Hs trả lời tập nghiệm I/Bất phương trình mũ : 1/ Bất phương trình mũ cơ bản: (SGK) HĐ2: ví dụ minh hoạ Hoạt động nhóm: Nhóm 1 và 2 giải a Nhóm 3 và 4 giảib -Gv: gọi đại diện nhóm 1và 3 trình bày trên bảng Nhóm còn lại nhận xét GV: nhận xét và hoàn thiện bài giải trên bảng H3:em nào có thể giải được bpt 2x <16 Các nhóm cùng giải -đại diện nhóm trình bày, nhóm còn lại nhận xét bài giải HS suy nghĩ và trả lời Ví dụ: giải bpt sau: a/ 2x > 16 b/ (0,5)x HĐ3:củng cố phần 1 Dùng bảng phụ:yêu cầu HS điền vào bảng tập nghiệm bpt: a x < b, ax , ax GV hoàn thiện trên bảng phụ và cho học sinh chép vào vở -đại diện học sinh lên bảng trả lời -học sinh còn lại nhận xét và bổ sung HĐ4: Giải bpt mũ đơn giản GV: Nêu một số pt mũ đã học,từ đó nêu giải bpt -cho Hs nhận xét vp và đưa vế phải về dạng luỹ thừa -Gợi ý HS sử dụng tính đồng biến hàm số mũ -Gọi HS giải trên bảng GV gọi hS nhận xét và hoàn thiện bài giải GV hướng dẫn HS giải bằng cách đặt ẩn phụ Gọi HS giải trên bảng GV yêu cầu HS nhận xét sau đó hoàn thiện bài giải của VD2 -trả lời đặt t =3x 1HS giải trên bảng -HScòn lại theo dõi và nhận xét 2/ giải bpt mũ đơn giản VD1:giải bpt (1) Giải: (1) VD2: giải bpt: 9x + 6.3x – 7 > 0 (2) Giải: Đặt t = 3x , t > 0 Khi đó bpt trở thành t 2 + 6t -7 > 0 (t> 0) HĐ5: Cũng cố:Bài tập TNKQ( 5 phút) Bài1: Tập nghiệm của bpt : A ( -3 ; 1) B: ( -1 ; 3) C: ( 0 ; 3 ) D: (-2 ; 0 ) Bài 2: Tập nghiệm bpt : 2-x + 2x là: A:R B: C: D : S= Tiết 36 Bất phương trình lôgarit HĐ6:Cách giải bất phương trình logarit cơ bản GV :- Gọi HS nêu tính đơn điệu hàm số logarit -Gọi HS nêu dạng pt logarit cơ bản,từ đó GV hình thành dạng bpt logarit cơ bản GV: dùng bảng phụ( vẽ đồ thị hàm số y = loga x và y =b) Hỏi: Tìm b để đt y = b không cắt đồ thị GV:Xét dạng: loga x > b ( ) Hỏi:Khi nào x > loga b, x<loga b GV: Xét a>1, 0 <a <1 -Nêu được tính đơn điệu hàm số logarit y = loga x - cho ví dụ về bpt loga rit cơ bản -Trả lời : không có b -Suy nghĩ trả lời I/ Bất phương trình logarit: 1/ Bất phương trìnhlogarit cơ bản: Dạng; (SGK) Loga x > b + a > 1 , S =( ab ;+ +0<a <1, S=(0; ab ) HĐ7: Ví dụ minh hoạ Sử dụng phiếu học tập 1 và2 GV : Gọi đại diện nhóm trình bày trên bảng GV: Gọi nhóm còn lại nhận xét GV: Đánh giá bài giải và hoàn thiện bài giải trên bảng Hỏi: Tìm tập nghiệm bpt: Log3 x < 4, Log0,5 x Cũng cố phần 1: GV:Yêu cầu HS điền trên bảng phụ tập nghiệm bpt dạng: loga x , loga x < b loga x GV: hoàn thiện trên bảng phụ HĐ 8 :Giải bpt loga rit đơn giản Trả lời tên phiều học tập theo nhóm -Đại diện nhóm trình bày - Nhận xét bài giải -suy nghĩ trả lời - điền trên bảng phụ, HS còn lại nhận xét Ví dụ: Giải bất phương trình: a/ Log 3 x > 4 b/ Log 0,5 x -Nêu ví dụ 1 -Hình thành phương pháp giải dạng :loga f(x)< loga g(x)(1) +Đk của bpt +xét trường hợp cơ số Hỏi:bpt trên tương đương hệ nào? - Nhận xét hệ có được GV:hoàn thiện hệ có được: Th1: a.> 1 ( ghi bảng) Th2: 0<a<1(ghi bảng) GV -:Gọi 1 HS trình bày bảng - Gọi HS nhận xét và bổ sung GV: hoàn thiện bài giải trên bảng GV:Nêu ví dụ 2 -Gọi HS cách giải bài toán -Gọi HS giải trên bảng GV : Gọi HS nhận xét và hoàn thiệnbài giải - nêu f(x)>0, g(x)>0 và -suy nghĩ và trả lời - ! hs trình bày bảng -HS khác nhận xét -Trả lời dùng ẩn phụ -Giải trên bảng -HS nhận xét 2/ Giải bất phương trình: a/Log0,2(5x +10)< log0,2(x2 +6x+8)(2) Giải: (2) Ví dụ2: Giải bất phương trình: Log32 x +5Log 3 x -6 < 0(*) Giải: Đặt t = Log3 x (x >0 ) Khi đó (*)t2 +5t – 6 < 0 -6< t < 1 <-6<Log3 x <1 3-6 < x < 3 HĐ9: Củng cố: Bài tập TNKQ( 5 phút) Bài 1:Tập nghiệm bpt: Log2 ( 2x -1 )Log2 (3 – x ) A B C D Bài2 ;Tập nghiệm bpt: Log0,1 (x – 1) < 0 A : R B: C: D:Tập rỗng Dặn dò: Về nhà làm bài tập 1và 2 trang 89, 90 Tiết 37 ÔN TẬP CHƯƠNG II Ngày soạn: 20/10/2009 I - Mục tiêu: * Về kiến thức: Qua bài học này giúp học sinh hệ thống các kiến thức về hàm số lũy thừa, mũ, lôgarit. Cụ thể: Phát biểu được định nghĩa lũy thừa với số mũ 0, Lũy thừa với số mũ nguyên, lũy thừa với số mũ hữu tỷ, lũy thừa với số mũ thực. Phát biểu được định nghĩa, viết các công thức về tính chất của hàm số mũ. Phát biểu được định nghĩa, viết các công thức về tính chất của lôgarit, lôgarit thập phân, lôgarit tự nhiên, hàm số lôgarit. * Về kỹ năng: Học sinh rèn luyện các kỹ năng sau: - Sử dụng các quy tắc tính lũy thừa và lôgarit để tính các biểu thức, chứng minh các đẳng thức liên quan. - Giải phương trình, hệ phương trình, bất phương trình mũ và lôgarit. * Về tư duy thái độ: Rèn luyện tư duy biện chứng, thái độ học tập tích cực, chủ động. II – Chuẩn bị: * Giáo viên: Giáo án, phiếu học tập, bảng phụ, Sách giáo khoa. * Học sinh: Ôn tập lại lí thuyết và giải các bài tập về nhà III – Phương pháp: Vấn đáp giải quyết vấn đề và kết hợp các phương pháp dạy học khác. IV – Tiến trình bài học: Ổn định lớp: Kiểm tra bài cũ: Câu hỏi : Nêu định nghĩa và các tính chất của hàm số luỹ thừa? Bài mới: Hoạt động 1: Sử dụng các tính chất của hàm số mũ và lôgarit để giải các bài tập sau: a) Cho biết tính b) Cho biết tính Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Gọi học sinh nhắc lại các tính chất của hàm số mũ và lôgarit . - Yêu cầu học sinh vận dụng làm bài tập trên. - Trả lời theo yêu cầu của giáo viên. - Thảo luận và lên bảng trình bày. a) b) Ta có: Hoạt động 2: Giải các phương trình mũ và lôgarit sau: a) b) c) Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Gọi học sinh nhắc lại phương pháp giải phương trình mũ. - Yêu cầu học sinh vận dụng làm bài tập trên. - Gọi học sinh nhắc lại phương pháp giải phương trình lôgarit. - Tìm điều kiện để các lôgarit có nghĩa? - Hướng dẫn hs sử dụng các công thức + + + để biến đổi phương trình đã cho - Yêu cầu học sinh vận dụng làm bài tập trên. - Gọi hoc sinh nhắc lại công thức lôgarit thập phân và lôgarit tự nhiên. - Cho học sinh quan sát phương trình c) để tìm phương pháp giải. - Giáo viên nhận xét, hoàn chỉnh lời giải. - Trả lời theo yêu cầu của giáo viên. Nếu thì pt (*) VN Nếu thì pt (*) có nghiệm duy nhất - Thảo luận và lên bảng trình bày - Trả lời theo yêu cầu của giáo viên. Đk: - Thảo luận và lên bảng trình bày. - Nhắc lại theo yêu cầu của giáo viên. - Thảo luận để tìm phương pháp giải. a) b) (*) Đk: c) (3) (3) Hoạt động 3: Giải các bất phương trình sau : a) b) Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Gọi học sinh đưa các cơ số trong phương trình a) về dạng phân số và tìm mối liên hệ giữa các phân số đó. - Yêu cầu học sinh vận dụng giải bất phương trình trên. - Cho hs nêu phương pháp giải bpt lôgarit: - Hướng dẫn cho hoc sinh vận dụng phương pháp trên để giải bpt. -Giáo viên nhận xét và hoàn thiện lời giải của hoc sinh. - Trả lời theo yêu cầu của giáo viên. Nếu đặt thì - Thảo luận và lên bảng trình bày. - Trả lời theo yêu cầu của gv. Đk: + Nếu thì (*) + Nếu thì (*) - Thảo luận và lên bảng trình bày. a) b) (*) Đk: Tập nghiệm Củng cố: - Nêu tính đồng biến nghich biến của hàm số mũ và lôgarit. - Nêu các phương pháp giải phương trình mũ và phương trình lôgarit. Hướng dẫn học bài ở nhà và bài tập về nhà ( 5’ ) - Xem lại các kiến thức đã học trong chương II, Làm các bài tập còn lại ở SGK và SBT. - Chuẩn bị kiểm tra 1 tiết chương II KIỂM TRA 1 TIẾT (CHƯƠNG II) Ngày soạn: 20/10/2009 I) Mục đích: - Hệ thống lại các kiến thức đã học ở chương II - Rèn luyện kỹ năng giải bài tập cho HS - Giúp HS tự kiểm tra lại kiến thức đã học - Rèn luyện khả năng tư duy độc lập cho HS II) Mục tiêu: 1) Về kiến thức: - Giúp HS nắm lại kiến thức cơ bản của chương II và có phương pháp tự ôn tập kiến thức đã học - Giúp HS có phương phương pháp nắm vững kiến thức lý thuyết để vận dụng vào bài tập cơ bản 2) Về kỹ năng: - Kỹ năng sử dụng thời gian hợp lý để giải từng dạng bài tập - Rèn luyện kỹ năng tư duy hợp lý thông qua các bài tập trắc nghiệm cơ bản - Rèn luyện khả năng sáng tạo cho HS thông qua các bài tập có khả năng suy luận cao ĐỀ I. PHẦN TRẮC NGHIỆM KHÁCH QUAN (4đ) Câu1:Rút gọn biểu thức I = ta được A. I = x B. I = x2 C. I = x3 D. I = x4 Câu2: Giá trị của biểu thức T = bằng A. T = 11 B. T = 33 C. T = 3 D. T = 1 Câu3: Đạo hàm của hàm số y = là A. y’ = B. y’ = C. y’ = D. y’ = Câu4: Tập xác định của hàm số y = là : A. B. C. D. Câu5: Cho . Tính giá trị của biểu thức P = A. P = 15625 B. P = 20825 C. P = 16825 D. P = 18025 Câu6: Đạo hàm của hàm số y = là: A. y’ = B. y’ = C. y’ = D. y’ = Câu7: Tập nghiệm của phương trình là: A. B. C. D. Câu8: Tập nghiệm của bất phương trình là A. B. C. D. II. PHẦN TỰ LUẬN (6đ) Câu1:(1đ) Khảo sát sự biến thiên của hàm số y = Câu2:(1,5đ) Xác định a để hàm số y = nghịch biến trên Câu3:(1,5đ) Giải phương trình : Câu4:(2đ) Giải bất phương trình : 2.14x + 3.49x - 4x 0 **********HẾT********** ĐÁP ÁN I. TRẮC NGHIỆM: Mỗi câu trả lời đúng được 0,5 điểm 1 2 3 4 5 6 7 8 B C B B A C A B II. TỰ LUẬN Câu1:(1đ) Khảo sát sự biến thiên của hàm số y = TXĐ : D = y = Suy ra hàm số ngịch biến trên D Câu2: (1,5đ) Xác định a để hàm số y = nghịch biến trên Hàm số y = nghịch biến trên Câu3: (1,5đ) Giải phương trình : (*) Điều kiện (*) Vậy nghiệm của phương trình là x= 5 Câu4: (2đ) Giải bất phương trình : 2.14x + 3.49x - 4x 0 (**) Đặt t = (t > 0) (**) Với t
Tài liệu đính kèm: