Giáo án Hình học 12 - Tiết 13 đến tiết 18

Giáo án Hình học 12 - Tiết 13 đến tiết 18

1. Về kiến thức:

Nắm được sự tạo thành mặt tròn xoay ,các yếu tố của mặt tròn xoay: Đường sinh,trục

Hiểu được mặt nón tròn xoay ,góc ở đỉnh ,trục,đường sinh của mặt nón

Phản biện các khái niệm: Mặt nón,hình nón khối nón tròn xoay,nắm vững công thức tính toán diện tích xung quanh ,thể tích của mặt trụ ,phân biệt mặt trụ,hình trụ,khối trụ . Biết tính diện tích xung quanh và thể tích.

Hiểu được mặt trụ tròn xoay và các yếu tố liên quan như:Trục ,đường sinh và các tính chất c

2. Về kỹ năng:

Kỹ năng vẽ hình ,diện tích xung quanh ,diện tích toàn phần,thể tích .

Dựng thiết diện qua đỉnh hình nón ,qua trục hình trụ,thiết diện song song với trục .Tính được diện tích, thể tích của hình nón, hình trụ khi biết được một số yếu tố cho trước.

 

doc 18 trang Người đăng haha99 Lượt xem 1079Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Hình học 12 - Tiết 13 đến tiết 18", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn : 01/11/2008
Tiết 13 - 14
§1. KHÁI NIỆM VỀ MẶT TRÒN XOAY
Mục tiêu: 
Về kiến thức:
Nắm được sự tạo thành mặt tròn xoay ,các yếu tố của mặt tròn xoay: Đường sinh,trục
Hiểu được mặt nón tròn xoay ,góc ở đỉnh ,trục,đường sinh của mặt nón 
Phản biện các khái niệm: Mặt nón,hình nón khối nón tròn xoay,nắm vững công thức tính toán diện tích xung quanh ,thể tích của mặt trụ ,phân biệt mặt trụ,hình trụ,khối trụ . Biết tính diện tích xung quanh và thể tích.
Hiểu được mặt trụ tròn xoay và các yếu tố liên quan như:Trục ,đường sinh và các tính chất c
Về kỹ năng:
Kỹ năng vẽ hình ,diện tích xung quanh ,diện tích toàn phần,thể tích .
Dựng thiết diện qua đỉnh hình nón ,qua trục hình trụ,thiết diện song song với trục .Tính được diện tích, thể tích của hình nón, hình trụ khi biết được một số yếu tố cho trước.
Về tư duy và thái độ:
Nghiêm túc tích cực ,tư duy trực quan 
Chuẩn bị:
GV: Chuẩn bị thước kẻ,bảng phụ ,máy chiếu (nếu có ) ,phiếu học tập 
HS: SGK,thước ,campa
Phương pháp:
Phối hợp nhiều phương pháp ,trực quan ,gợi mở,vấn đáp ,thuyết giảng 
Tiến trình bài học:
Tiết 13
Ổn định tổ chức:
Kiểm tra bài cũ:
Bài mới:
Hoạt động giáo viên
Hoạt động học sinh
Ghi bảng
+ Giới thiệu một số vật thể : Ly,bình hoa ,chén ,gọi là các vật thể tròn xoay 
-Trên mp(P) chovà () 
M() 
Quay M quanh một góc 3600 được đường gì?
-Quay (P) quanh trục thì đường () có quay quanh ?
-Quan sát mặt ngoài của các vật thể
HS cho ví dụ vật thể có mặt ngoài là mặt tròn xoay
I/ Sự tạo thành mặt tròn xoay 
(SGK)	
Hình vẽ 2.2:
 + (l) là đường sinh 
 + m là trục 
- Vậy khi măt phẳng (P) quay quanh trục thì đường () quay tạo thành một mặt tròn xoay 
Trong mp(P) cho và tạo một góc 
Cho (P) quay quanh thì d tạo ra mặt tròn xoay
Hình thành khái niệm
II/ Mặt nón tròn xoay 
1/ Định nghĩa (SGK)
- Vẽ hình:
-Đỉnh O. Trục 
d : đường sinh ,góc ở đỉnh 2
+ Chọn OI làm trục ,quay OIM quanh trục OI 
H: Nhận xét gì khi quay cạnh IM và OM quanh trục ?
+Chính xác kiến thức.
Hình nón gồm mấy phần? 
+ Có thể phát biểu khái niệm hình nón tròn xoay theo cách khác 
-GV đưa ra mô hình khối nón tròn xoay cho hs nhận xét và hình thành khái niệm 
+ nêu điểm trong ,điểm ngoài 
+ củng cố khái niệm : Phân biệt mặt nón ,hình nón , khối nón .
2 / Hình nón tròn xoay và khối nón tròn xoay 
a/ Hình nón tròn xoay
+ Khi quay vuông OIM quanh cạnh OI một góc 3600 ,đường gấp khúc IMO sinh ra hình nón tròn xoay O: đỉnh . OI: OI - Đường cao
OM: Độ dài đường sinh 
-Mặt xung quanh (sinh bởi OM) và mặt đáy ( sinh bởi IM)
b/ Khối nón tròn xoay (SGK) 
3/ Diện tích xung quanh
a/ Định nghĩa (SGK)
b/ Công thức tính diện tích xung quanh 
Cho hình nón ; trên đường tròn đáy lấy đa giác đều A1A2An, nối các đường sinh OA1,OAn( Hình 2.5 SGK) 
Khái niệm hình chóp nội tiếp hình nón 
Diện tích xung quanh của hình chóp đều được xác định như thế nào ?
Nêu cách tính diện tích xung quanh của hình chóp đều có cạnh bên l.
+ Khi n dần tới vô cùng thì giới hạn của d là? 
Giới hạn của chu vi đáy?
Hình thành công thức tính diện tích xung quanh . 
HS nêu S=( Cv Chu vi đáy )
S=lCchu vi đường tròn
 =l=
 Học sinh trả lời
HS nhận biết diện tích xung quanh chính là diện tích hình quạt.
HS lên bảng giải.
Cho hình nón đỉnh O đường sinh l,bán kính đường đáy r
Khi đó ta có công thức :
 Sxq= Stp=Sxq+Sđáy
Ví dụ: Cho hình nón có đường sinh l=5 ,đường kinh bằng 8 .Tính diện tích xung quanh của hình nón.
Nêu ĐN: 
+ Cho học sinh nêu thể tích khối chóp đều n cạnh 
+ Khi n tăng lên vô cùng tìm giới hạn diện tích đa giác đáy ?
 Công thức 
 HS Chú ý nghe và ghi bài 
V=Sđáy.h
HS tìm diện tích hình tròn đáy 
V=
4/ Thể tích khối nón 
a/ Định nghĩa(SGK)
b/Công thức tính thể tích khối nón tròn xoay:
Khối nón có chiều cao h,bán kính đường tròn đáy r thì thể tích khối nón là: V= 
+ Cho HS tìm r,l thay vào công thức diện tích xung quanh ,diện tích toàn phần .
c/ Cắt hình nón bởi mặt phẳng qua trục ta được một thiết diện . Thiết diện là hình gì? Tính diện tích thiết diện đó .
+ Nêu cách xác định thiết diện 
HS lên bảng giải 
HS lên bảng tính thể tích
Hs xác định thiết diện là tam giác đều và sử dụng công thức để tính diện tích thiết diện.
5/ Ví dụ :Trong không gian cho tam giác OIM vuông tại I,góc =300 và cạnh IM=a.Khi quay tam giác IOM quanh cạnh OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay .
a/ tính diện tích xung quanh và diện tích toàn phần. 
a/ ĐS: Sxq= Stp=
b/ ĐS: V=
c/ ĐS :S=OM2=
Ta thay đường bởi đường thẳng d song song
+ Khi quay mp (P) đường d sinh ra một mặt tròn xoay gọi là mặt trụ tròn xoay ( Hay mặt trụ)
+ Cho học sinh lấy ví dụ về các vật thể liên quan đến mặt trụ tròn xoay 
+ l là đường sinh 
+ r là bán kính mặt trụ
+ Mặt ngoài viên phấn 
+ Mặt ngoài ống tiếp điện 
III/ Mặt trụ tròn xoay:
1/ Định nghĩa (SGK)
Hình vẽ:2.8
Trên cơ sở xây dựng các khái niện hình nón tròn xoay và khối nón tròn xoay cho hs làm tương tự để dẫn đến khái niệm hình trụ và khối trụ
+Phân biệt mặt trụ,hình trụ ,khối trụ 
Gọi hs cho các ví dụ để phân biệt mặt trụ và hình trụ ; hình trụ và khối trụ 
Hs thảo luận nhóm và trình bày khái niệm 
+HS trả lời
Mặt đáy:
Mặt xung quanh :
Chiều cao:
Học sinh cho ví dụ
2/ Hình trụ tròn xoay và khối trụ tròn xoay 
a/ Hình trụ tròn xoay 
Hình vẽ 2.9
b/ Khối trụ tròn xoay (SGK)
+ Cho học sinh thảo luận nhóm để nêu các khái niệm về lăng trụ nội tiếp hình trụ
+ Công thức tính diện tích xung quanh hình lăng trụ n cạnh
Gọi HS phát biểu công thức bằng lời
HS trả lời ( nêu nội dung SGK)
Trình bày công thức và tính diện tích xung quanh hình lưng trụ 
HS nêu đáp số 
Sxq=
Stp=Sxq+2Sđáy 
Ví dụ áp dụng :
Cho hình trụ có đường sinh l=15,và mặt đáy có đường kính 10. Tính diện tích xung quanh và diện tích toàn phần 
3/ Diện tích xung quanh của hình trụ(SGK)
Vẽ hình 
r
l
+ Nhắc lại công thức tính thể tích hình lăng trụ đều n cạnh 
H: Khi n tăng lên vô cùng thì giới hạn diện tích đa giác đáy ?
Chiều cao lăng trụ có thay đổi không ?
 Công thức 
V=B.h 
B diện tích đa giác đáy
h Chiều cao 
4/ Thể tích khối trụ tròn xoay
a/ Định nghĩa (SGK)
b/ Hình trụ có đường sinh là l ,bán kính đáy r có thể tích là:
 V=Bh Với B=,h=l
Hay V= l
Vẽ hình 2.12
Phát phiếu học tập( Nội dung trong câu c/)
c/Qua trung điểm DH dựng mặt phẳng (P) vuông góc với DH . Xác định thiết diện ,tính diện tích thiết diện 
Học sinh lên bảng giải 
Học sinh hoạt động nhóm 
5/Ví dụ (SGK)
Củng cố 
 Nhắc lại lần nữa công thức diện tích và thể tích của hình nón, hình trụ.
Hướng dẫn về nhà
Phân biệt các khái niệm ,xem công thức tính toán 
 Hướng dẫn bài tập về nhà bài 1,2,3 ,5,6 trang 39, bài 9 trang 40
Tiết 14
Ổn định tổ chức:
Kiểm tra bài cũ:
Trong không gian cho hình chữ nhật ABCD với AB=a, AD=a. Khi quay hình chữ nhật này xung quanh cạnh AD ta được một hình trụ tròn xoay. Tính Sxq của hình trụ và thể tích V của khối trụ.
Học sinh giải:
Hình trụ có bán kính R=a, chiều cao h=a.
 Sxq = 2Rl = 2.a.a= 2a(đvdt) ( l=h=a): 3 điểm.
 V = Rh = a.a= a (đvdt): 3 điểm.
Bài mới:
Hoạt động giáo viên
Hoạt động học sinh
Ghi bảng
Hướng dẫn:
a. Hình nón có: 
Bán kính đáy: r=a.
Chiều cao: h=SO=2a. 
 S
 A’ O’ B’
 A O A’
Hướng dẫn:
1. Hình trụ có: 
Bán kính đáy r. 
Chiều cao OO'=r.
 S = 2.r.r = 2r
Gọi O'M là một đường sinh của hình nón.
O'M=
==2r
Nội dung phiếu học tập 1: Thiết diện qua trục của một hình nón tròn xoay là một tam giác vuông cân có diện tích bằng 2a(đvdt). Khi đó, thể tích của khối nón này là:
A. B.
C. D.
Đáp án: D.
Độ dài đường sinh: l=SA== a.
Sxq = rl = a.
 Sđ = r = a.
Stp = Sxq+Sđ = (1+)a (đvdt)
b. Nhận xét: Thiết diện (C) là hình tròn tâm O' bán kính r'=O'A'=(2a-x).Vậy diện tích thiết diện là:
S= r'= (2a-x)
c. Gọi V là thể tích của hình nón đỉnh O và đáy là hình tròn C(O';r')
 V= OO’. S= .x(2a-x)
Ta có: 
V=.2x(2a-x) .
 Hình nón có: 
Bán kính đáy: r. 
Chiều cao: OO'=r. 
Đường sinh: l=O’M=2r.
 S=.r.2r = 2r
Vậy: =
2. Gọi V là thể tích khối nón.
 V là thể tích khối còn lại của khối trụ.
V = r.r = r
V = Vtrụ - V= r.r-r =
Vậy: =
Bài 1: Cho một hình nón tròn xoay đỉnh S và đáy là hình tròn (O;r). Biết r=a; chiều cao SO=2a (a>0).
a. Tính diện tích toàn phần của hình nón và thể tích của khối nón.
b. Lấy O' là điểm bất kỳ trên SO sao cho OO'=x (0<x<2a). Tính diện tích của thiết diện (C) tạo bởi hình nón với măt phẳng đi qua O' và vuông góc với SO.
c. Định x để thể tích của khối nón đỉnh O, đáy là (C) đạt GTLN.
Giải: 
a. V = rh = a (đvdt)
c-Hay V 
Dấu “=” xảy ra2x=2a-xx= 
Vậy x= thì V đạt GTLN và Max V=
Bài 2: Một hình trụ có 2 đáy là hai hình tròn (O;r) và (O';r'). Khoảng cách giữa hai đáy là OO'=r. Một hình nón có đỉnh O' và đáy là hình tròn (O;r).
1. Gọi S, S lần lượt là diện tích xung quanh của hình trụ và hình nón trên. Tính .
2. Mặt xung quanh của hình nón chia khối trụ thành hai phần. Tính tỷ số thể tích của hai phần đó.
Nội dung phiếu học tập 2: Biết rằng thiết diện qua trục của một hình trụ tròn xoay là một hình vuông có cạnh a. Khi đó thể tích của khối trụ là:
A. B. a
C. D. 
Đáp án: C.
4/ Củng cố 
Nhắc lại lần nữa các công thức diện tích và thể tích của hình nón, hình trụ.
Cho học sinh quan sát và xem lại hai phiếu học tập.
5/ Hướng dẫn về nhà
Bài tập về nhà: Bài 2,4,7,9- Trang 39, 40- SGK Hình học 12 chuẩn.
---------------------------------------------
Ngày soạn : 01/11/2008
Tiết 15 - 20
§1. MẶT CẦU
Mục tiêu: 
Về kiến thức: 
+ Nắm được định nghĩa mặt cầu.
+ Giao của mặt cầu và mặt phẳng
+ Giao của mặt cầu với đường thẳng, tiếp tuyến của mặt cầu.
+ Nắm được định nghĩa mặt cầu ngoại tiếp, nội tiếp hình đa diện.
+ Nắm được công thức tính diện tích mặt cầu và thể tích khối cầu.
Về kĩ năng: 
+ Biết cách vẽ hình biểu diễn giao của mặt cầu và mặt phẳng, giữa mặt cầu và đường thẳng.
+ Học sinh rèn luyện kĩ năng xác định tâm và tính bán kính mặt cầu nội tiếp, ngoại tiếp hình đa diện.
+ Kĩ năng tính diện tích mặt cầu và thể tích khối cầu.
Về tư duy và thái độ:
+ Biết qui lạ về quen.
+ Học sinh cần có thái độ cẩn thận, nghiêm túc, chủ động, tích cực hoạt động chiếm lĩnh tri thức mới.
Chuẩn bị: 
+ Giáo viên: Giáo án, computer + projector hoặc bảng phụ; phiếu học tập.
+ Học sinh: SGK, các dụng cụ học tập.
Phương pháp dạy học: 
Gợi mở, nêu vấn đề, giải quyết vấn đề đen xen hoạt động nhóm
Tiến trình bài dạy: 
Tiết 15
Ổn định tổ chức
Kiểm tra bài cũ: Kết hợp tronmg bài mới
Bài mới: 
Hoạt động giáo viên
Hoạt động học sinh
Ghi bảng
+GV cho HS xem qua các hình ảnh bề mặt quả bóng chuyền, của mô hình quả địa cầu qua máy chiếu.
+?GV: Nêu khái niệm đường tròn trong mặt phẳng ?
D
-> GV dẫn dắt đến khái niệm mặt cầu trong không gian.
 C
B
R
O
A
+? Nếu C, D Î (S)
-> Đoạn CD gọi là gì ? 
+? Nếu A,B Î (S) và AB đi qua tâm O của mặt cầu thì điều gì xảy ra ?
+? Như vậy, một mặt cầu được hoàn toàn xác định khi nào ?
VD: Tìm tâm và bán kính mặt cầu có đươờn kính MN = 7 ?
+? Có nhận xét gì về đoạn OA và r ?
+? Qua đó, cho biết thế nào là khối cầu ?
+? Để biểu diễn mặt cầu, ta vẽ như thế nào ?
*Lưu ý: 
Hình biểu diễn của mặt cầu qua:
- Phép chiếu vuông góc -> là một đường tròn.
- Phép chiếu ... C)
HS trả lời OA = OB = OC
HS: O nằm trên trục đường tròn (C) ngoại tiếp DABC.
O’M = không đổi.
=> M Î mặt cầu tâm O’
=> (C) chứa trong mặt cầu tâm O’ 
Bài tập 3 trang 49 SGK
=> Gọi A,B,C là 3 điểm trên (C). O là tâm của một mặt cầu nào đó chứa (C) 
Ta có OA = OB = OC => O ÎD trục của (C) 
(<=)"O’Î(D) trục của (C) 
với mọi điểm MÎ(C) ta có O’M = 
= không đổi
=> M thuộc mặt cầu tâm O’ bán kính 
=> Kết luận: bài toán : Tập hợp cần tìm là trục đường tròn (C).
Củng cố:
Bài tập củng cố: Tính thể tích khối cầu ngoại tiếp hình chóp ∆ đều có cạnh đáy =a và chiều cao =h
HS: + Nếu tâm đường tròn ngoại tiếp ∆ ABC là H
Vì SH (ABC) SH=h.Trong (SHA) dựng đường trung trực của SA cắt SH tại O O là tâm m cầu ngoại tiếp hình chóp( c/m)OA=OS=OC=OB 
 R=OA . Có SO.SH =SI.SA SO= mà SA2 =SH2=
R=SO=V=
S
I
O
C
A
H
N
M
B
B
Hướng dẫn về nhà
Bài tập: Cho tứ diện ABCD có ABC và BCD là các tam giác đều cạnh a, 
Chứng minh tam giác ABC và ADB là những tam giác vuông
Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện ABCD
Tính diện tích mặt cầu và thể tích khối cầu
Hoạt động 4: Bài tập 5 tráng 49 SGK
TG
Hoạt động của giáo viên 
Hoạt động của học sinh 
Ghi bảng, trình chiếu
8’
Nhận xét: Mặt phẳng (ABCD) có :
- Cắt mặt cầu S(O, r) không ? giao tuyến là gì ?
- Nhận xét MA.MB với MC.MD nhờ kết quả nào?
- Nhận xét: Mặt phẳng (OAB) cắt mặt cầu S(O,r) theo giao tuyến là đường tròn nào?
- Phương tích của M đối với (C1) bằng các kết quả nào ?
Trả lời: cắt
- Giao tuyến là đường tròn (C) qua 4 điểm A,B,C,D.
- Bằng nhau: Theo kết quả phương tích.
- Là đường tròn (C1) tâm O bán kính r có MAB là cát tuyến.
- MA.MB hoặc MO2 – r2 
a)Gọi (P) là mặt phẳng tạo bởi (AB,CD) 
=> (P) cắt S(O, r) theo giao tuyến là đường tròn (C) qua 4 điểm A,B,C,D 
=> MA.MB = MC.MD
b)Gọi (C1) là giao tuyến của S(O,r) với mp(OAB) => C1 có tâm O bán kính r .
Ta có MA.MB = MO2-r2 
	 = d2 – r2 
	Hoạt động 5: Giải bài tập 6 trang 49 SGK
TG
Hoạt động của giáo viên 
Hoạt động của học sinh 
Ghi bảng, trình chiếu
7’
- Nhận xét: đường tròn giao tuyến của S(O,r) với mặt phẳng (AMI) có các tiếp tuyến nào?
- Nhận xét về AM và AI 
Tương tự ta có kết quả nào ?
- Nhận xét 2 tam giác MAB và IAB
- Ta có kết quả gì ?
AM và AI 
Trả lời: 
	AM = AI 
	BM = BI
DMAB = DIAB (C-C-C)
- Gọi (C) là đường tròn giao tuyến của mặt phẳng (AMI) và mặt cầu S(O,r). Vì AM và AI là 2 tiếp tuyến với (C) nên AM = AI.
Tương tự: BM = BI
Suy ra DABM = DABI 
	 (C-C-C)
=> 
	Hoạt động 6: bài tập 7 trang 49 SGK
TG
Hoạt động của giáo viên 
Hoạt động của học sinh 
Ghi bảng, trình chiếu
a)
7’
Nhắc lại tính chất : Các đường chéo của hình hộp chữ nhật độ dài đường chéo của hình hộp chữ nhật có 3 kích thước a,b,c
=> Tâm của mặt cầu qua 8 đỉnh A,B,C,D,A’,B’,C’,D’ của hình hộp chữ nhật.
Bán kính của mặt cầu này
Trả lời: Đường chéo của hình hộp chữ nhật bằng nhau và cắt nhau tại trung điểm mỗi đường 
AC’ = 
Vẽ hình: 
Gọi O là giao điểm của các đường chéo hình hộp chữ nhật ABCD.A’B’C’D’.
Ta có OA = OB = OC =OD=OA’=OB’=OC’=OD’
=> O là tâm mặt cầu qua 8 dỉnh hình hộp chữ nhật ABCD.A’B’C’D’ và bán kính r = 
b)
3’
Giao tuyến của mặt phẳng (ABCD) với mặt cầu trên là ?
- Tâm và bán kính của đường tròn giao tuyến này ?
Trả lời: Đường tròn ngoại tiếp hình chữ nhật ABCD.
Trả lời: Trung điểm I của AC và bán kính r = 
Giao của mặt phẳng (ABCD) với mặt cầu là đường tròn ngoại tiếp hình chữ nhật ABCD.
Đường tròn này có tâm I là giao điểm của AC và BD
Bán kính r = 
	Hoạt động 7: Bài tập 10
TG
HĐGV
HĐHS
Ghi bảng
10’
Để tính diện tích mặt cầu thể tích khối cầu ta phải làm gì ?
Nhắc lại công thức diện tích khối cầu, thể tích khối cầu ?
Hướng dẫn cách xác định tâm mặt cầu ngoại tiếp 1 hình chóp.
- Dựng trục đường tròn ngoại tiếp đa giác đáy.
- Dựng trung trực của cạnh bên cùng nằm trong 1 mặt phẳng với trục đươờn tròn trên.
- Giao điểm của 2 đường trên là tâm của mặt cầu.
. Trục đường tròn ngoại tiếp DSAB
. Đường trung trực của SC trong mp (SC,D) ?
. Tâm của mặt cầu ngoại tiếp hình chóp S.ABC
Tím bán kính của mặt cầu đó.
	S = 4pR2
	V = R3
. Vì DSAB vuông tại S nên trục là đường thẳng (D) qua trung điểm của AB và vuong góc với mp(SAB).
. Đường thẳng qua trung điểm SC và // SI.
. Giao điểm là tâm của mặt cầu.
Gọi I là trung điểm AB do DSAB vuông tại S => I là tâm đường tròn ngoại tiếp DSAB .
. Dựng (D) là đường thẳng qua I và D ^(SAB) => D là trục đường tròn ngoại tiếp DSAB.
. Trong (SC,D) dựng trung trực SC cắt (D) tại O => O là tâm mặt cầu ngoại tiếp hình chóp S.ABC.
r2 = OA2 = OI2 + IA2 
= 
=> S = p(a2+b2+c2)
V = 
Củng cố toàn bài: 10’
- Phát biểu định nghĩa mặt cầu, vị trí tương đối của đươờn thẳng với mặt cầu.
- Cách xác định tâm của mặt cầu ngoại tiếp một hình chóp.
Hướng dẫn làm bài ở nhà: 
	Bài tập 4: 
	Hướng dẫn: Giả sử mặt cầu S(O, R) tiếp xúc với 3 cạnh D ABC lần lượt tại A’,B’,C’. Gọi I là hình chiếu của S trên (ABC). Dự đoán I là gì của D ABC ? -> Kết luận OI là đường thẳng nào của D ABC => Dự đoán.
	Bài 8: Hướng dẫn vẽ hình.
	- Giả sử tứ diện ABCD có các cạnh AB, AC, AD, CB, CD, BD lần lượt tiếp xúc với mặt cầu nào đó lần lượt tại M, N, P, Q, R, S.
	Khi đó: AM = AN = AP = a
	 BM = BQ = BS = b
	 	 DP = DQ = DR = c
	 CN = CR = CS = d
	ÔN TẬP CHƯƠNG II
Tuần: 	Tiết:
Mục tiêu:
Về kiến thức:
- Hệ thống các kiến thức cơ bản về mặt tròn xoay và các yếu tố cơ bản về mặt tròn xoay như trục, đường sinh,... 
- Phân biệt được các khái niệm về mặt và khối nón, trụ, cầu và các yếu tố liên quan.
- Nắm vững các công thức tính diện tích xung quanh và thể tích của khối nón, khối trụ, công thức tính diện tích mặt cầu và thể tích khối cầu.
Về kỹ năng:
- Vận dụng được các công thức vào việc tính diện tích xung quanh và thể tích của các khối : nón, trụ, cầu.
- Rèn luyện kĩ năng vẽ hình cho học sinh. 
Về tư duy và thái độ:
- Rèn luyện tính tích cực, sáng tạo, cẩn thận.
Chuẩn bị:
Giáo viên:Giáo án, bảng phụ, phiếu học tập.
Học sinh: Dụng cụ học tập, SGK,...
Phương pháp: 
Gợi mở, giải quyết vấn đề.
Tiến trình bài học:
Tiết 1:
Ổn định tổ chức:
Kiểm tra bài cũ:
	CH1: Ghi các công thức tính diện tích và thể tích các mặt và khối:nón, trụ, cầu.
Mặt nón-Khối nón
Mặt trụ-Khối trụ
Mặt cầu-Khối cầu
Diện tích 
Sxq=
Sxq=
S=
Thể tích
V=
V=
V=
GV chính xác hóa kiến thức, đánh giá và ghi điểm.
Bài mới:
	 * Hoạt động 1: Giải bài toán đúng sai.
Tg
HĐGV
HĐHS
Đọc đề BT1 SGK
CH1: Qua 3 điểm A,B,C có bao nhiêu mặt phẳng.
CH2: Xét vị trí tương đối giữa mp (ABC) và mặt cầu và trả lời câu a.
CH3: Theo đề mp(ABC) có qua tâm O của mặt cầu không.
CH4: Dựa vào giả thiết nào để khẳng định AB là đường kính của đường tròn hay không.
+ Xem đề SGK /T50
+ Trả lời: Có duy nhất mp(ABC)
+ Mp(ABC) cắt mặt cầu theo giao tuyến là đường tròn qua A,B,C. Suy ra kết quả a đúng.
+ Chưa biết (Có 2 khả năng)
+ Dựa vào CH3 suy ra: 
 b- Không đúng.
 c- Không đúng.
+Dựa vào giả thiết: =900 và kết quả câu a
*Hoạt động 2: Kết hợp BT2 và BT5 SGK/T50
Tg
HĐGV
HĐHS
Ghi bảng
Nêu đề: Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu của A trên mp(BCD). N là trung điểm CD
 a- Chứng minh HB=HC=HD. Tính độ dài đoạn AH.
 b- Tính Sxq và V của khối nón tạo thành khi quay miền tam giác AHN quanh cạnh AH.
 c- Tính Sxq và V của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.
Hoạt động 2.1:
CH1: Có nhận xét gì về các tam giác AHB, AHC, AHD. Nêu cách tính AH.
Hoạt động 2.2:
CH: Để tính Sxq của mặt nón và V của khối nón, cần xác định các yếu tố nào?
+Gọi một hs lên bảng thực hiện.
+Cho các hs còn lại nhận xét bài giải, gv đánh giá và ghi điểm
Hoạt động 2.3:
CH: Để tính Sxq của mặt trụ và V của khối trụ, cần xác định các yếu tố nào?
+Gọi một hs lên bảng thực hiện.
+Cho các hs còn lại nhận xét bài giải, gv đánh giá và ghi điểm
- Vẽ hình (GV hướng dẫn nếu cần)
TL: Chúng là 3 tam giác vuông bằng nhau.
Suy ra HB=HC=HD
AH=
+Cần xác định độ dài đường sinh l = AN, bán kính đường tròn đáy r = HN và đường cao h=AH.
+Cần xác định độ dài đường sinh l = AB, bán kính đường tròn đáy r = BH và đường cao h=l
a) AH (BCD)
=> Các tam giác AHB, AHC, AHD vuông tại H
Lại có: AH cạnh chung
	AB=AC=AD(ABCD là tứ diện đều)
=> 3 tam giác AHB, AHC, AHD bằng nhau
Suy ra HB=HC=HD
*AH=
 ==
b) Khối nón tạo thành có:
 Sxq=rl=..
 =
V=
 ==
c) Khối trụ tạo thành có:
Sxq=2rl
=2.=
V=B.h= =
Tiết 2
*Hoạt động 3: BT 6/50 SGK
Tg
HĐGV
HĐHS
Ghi bảng
+ Nêu đề.
Hoạt động 3.1: Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp.
CH 1: Trình bày pp xác định tâm mặt cầu ngoại tiếp hình chóp. 
+ Nhận xét câu trả lời của hs và nhắc lại các bước:
1. Xác định trục Δ của đường tròn ngoại tiếp đa giác đáy.
2. Xác định mặt phẳng trung trực () (hoặc đường trung trực d) của cạnh bên bất kì.
3. Xác định giao điểm của Δ với () (hoặc của Δ với d) . Đó chính là tâm mặt cầu cần tìm.
CH 2: Đường tròn ngoại tiếp hình vuông ABCD có trục là đường thẳng nào?
CH 3: Có nhận xét gì về hai tam giác SAO và SMO’. Nêu cách tính bán kính R của mặt cầu.
Hoạt động 3.2: Tính diện tích mặt cầu và thể tích khối cầu.
CH : Nêu lại công thức tính diện tích mặt cầu và thể tích khối cầu. 
+ HS vẽ hình
+ Lắng nghe và trả lời.
+ Suy nghĩ trả lời câu hỏi.
+ Đó là hai tam giác vuông có chung góc nhọn nên chúng đồng dạng
 => 
+ S = 4πR2
+ V = 
 a. Gọi O’, R lần lượt là tâm và bán kính của mặt cầu
Vì O’A=O’B=O’C=O’D
 => O’ thuộc SO (1)
Trong (SAO), gọi M là trung điểm của SA và d là đường trung trực của đoạn SA
Vì O’S = O’A 
=> O’ thuộc d (2)
Từ (1) và (2) =>O’=SOd
+ R = O’S.
Hai tam giác vuông SAO và SMO’ đồng dạng nên:
Trong đó SA=
=> SO'==R
b) Mặt cầu có bán kính R= nên:
+ S=4π=
+ V= =
Củng cố:
 *Hoạt động 4: Giải bài tập trắc nghiệm theo nhóm(củng cố toàn bài)
Câu 1) Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. 
 1.1 Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD và A’B’C’D’. Diện tích S là:
A) πa2	B) 	C) 	D) 
	1.2 Gọi S’ là diện tích xung quanh của hình nón tròn xoay được sinh ra bởi đoạn thẳng AC’ khi quay xung quanh trục AA’. Diện tích S’ là:
	A) πa2	B) 	C) 	D) 
Câu 2) Số mặt cầu chứa một đường tròn cho trước là:
	A) 1	B) 2	C) vô số	D) 0
Câu 3) Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, có SA vuông góc với mp(ABC) và có SA=a, AB=b, AC=c. Mặt cầu đi qua các đỉnh A,B,C,S có bán kính r bằng:
	A) 	B) 	C) 	D) 
Câu 4) Cho hình trụ có bán kính đáy bằng r. Gọi O,O’ là tâm của hai đáy với OO’ = 2r. Một mặt cầu (S) tiếp xúc với hai đáy của hình trụ tại O và O’. Trong các mệnh đề dưới đây mệnh đề nào sai?
	A) Diện tích mặt cầu bằng diện tích xung quanh của hình trụ.
	B) Diện tích mặt cầu bằng diện tích toàn phần của hình trụ.
	C) Thể tích khối cầu bằng thể tích khối trụ.
	D) Thể tích khối cầu bằng thể tích khối trụ.
Cho các nhóm nêu đáp án và đại diện trình bày phương pháp giải theo chỉ định câu hỏi của GV.
GV nhận xét, đánh giá và ghi điểm cho nhóm.
Dặn dò:
- Về nhà làm các bài tập ôn chương còn lại
- Chuẩn bị cho bài kiểm tra 1 tiết vào tiết tiếp theo.

Tài liệu đính kèm:

  • docGiao an 12CB Chuong II.doc