Giáo án Hình học 12 - Nâng cao - Chương II: Mặt cầu - Mặt trụ - mặt nón

Giáo án Hình học 12 - Nâng cao - Chương II: Mặt cầu - Mặt trụ - mặt nón

Số tiết:2 ChuongII§1

MẶT CẦU,KHỐI CẦU

I/MỤC TIÊU:

*Về kiến thức:

-Học sinh hiểu được các khái niệm mặt cầu,mp kính, đường tròn lớn,mp tiếp xúc với

mặt cầu,tiếp tuyến của mặt cầu.

 -Biết công thức tính diện tích mặt cầu

*Về kỹ năng:

 - Rèn luyện kỹ năng tìm tâm , bán kính và tính diện tích mặt cầu

*Về tư duy và thái độ:

 -

II/CHUẨN BỊ :

* Giáo viên:

-giáo án,bảng phụ hình 33,các phiếu học tập

 *Học sinh:

-Đọc trước bài ,dụng cụ vẽ hình

 

doc 36 trang Người đăng ngochoa2017 Lượt xem 1615Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Hình học 12 - Nâng cao - Chương II: Mặt cầu - Mặt trụ - mặt nón", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn:
Số tiết:2	ChuongII§1
MẶT CẦU,KHỐI CẦU
I/MỤC TIÊU:
*Về kiến thức:
-Học sinh hiểu được các khái niệm mặt cầu,mp kính, đường tròn lớn,mp tiếp xúc với 
mặt cầu,tiếp tuyến của mặt cầu. 
	-Biết công thức tính diện tích mặt cầu
*Về kỹ năng:
	- Rèn luyện kỹ năng tìm tâm , bán kính và tính diện tích mặt cầu
*Về tư duy và thái độ:
	-
II/CHUẨN BỊ :
* Giáo viên:
-giáo án,bảng phụ hình 33,các phiếu học tập
 *Học sinh: 
-Đọc trước bài ,dụng cụ vẽ hình
III/PHƯƠNG PHÁP:
-Trực quan, thuyết trình, thảo luận nhóm
IV/TIẾN TRÌNH BÀI HỌC:
TIẾT 1
Ổn định lớp :(2’)
Bài mới: 
*Hoạt động 1: Hình thành định nghĩa mặt cầu,khối cầu
T/g
Hoạt động của GV
Hoạt động của HS
Ghi bảng
5’
8’
10’
HĐTP 1: Đ/nghĩa mặt cầu
Gv : +Nêu định nghĩa đường tròn trong mặt phẳng?
 gv hình thành và nêu đ/n mặt cầu trong không gian
HĐTP 2: Các thuật ngữ liên quan đến mặt cầu
GV : Cho mặt cầu S(O:R) và 1 điểm A
 + Nêu vị trí tương đối của điểm A với mặt cầu (S) ?
 + Vị trí tương đối này tuỳ thuộc vào yếu tố nào ?
gv giới thiệu các thuật ngữ và đ/nghĩa khối cầu
HĐTP 2: Ví dụ củng cố
Gv: Phát phiếu học tập 1
GV hướng dẫn thêm giúp HS tìm hướng giải bài toán 
 + Hãy nêu các đẳng thức vectơ liên quan đến trọng tâm tam giác? 
 + Tính GA,GB,GC theo a?
GV cho các HS khác nhận xét và gv hoàn chỉnh bài giải
 + HS trả lời
 +HS trả lời:
 .điểm A nằm trong,nằm trên hoặc nằm ngoài mặt cầu
 . OA và R
 +HS đọc và phân tích đề
 +HS nêu:
 .
 GA =GB =GC = 
HS thảo luận nhóm và đại diện hs của 1 nhóm lên trình bày bài giải
I/ Định nghĩa mặt cầu
Định nghĩa:
Sgk/38
S(O;R)=
Các thuật ngữ:
Sgk/38-39
 MA2 + MB2 + MC2
= 
=
= .
= 3 MG2 + a2
 Do đó,
 MA2 + MB2 + MC2= 2a2
 MG2 = 
 MG = 
Vậy tập hợp điểm M là
*Hoạt động2: Vị trí tương đố igiữa mặt phẳng và mặt cầu
T/g
Hoạt động của GV
Hoạt động của HS
Ghi bảng
5’
8’
HĐTP 1: Vị trí tương đối giữa mp và mặt cầu
 GV : bằng ví dụ trực quan : tung quả bóng trên mặt nước (hoặc 1 ví dụ khác)
 + Hãy dự đoán các vị trí tương đối giữa mp và mặt cầu?
 + Các kết quả trên phụ thuộc váo các yếu tố nào?
 GV củng cố lại và đưa ra kết luận đầy đủ
HĐTP 2:Ví dụ củng cố
 Gv giới thiệu đ/nghĩa mặt cầu nội tiếp hình đa diện
 Gv phát phiếu học tập 2:
 Gv hướng dẫn:
 + Nếu hình chóp S.A1A2An nội tiếp trong một mặt cầu thì các điểm A1 ,A2,,An có nằm trên 1 đường tròn không?Vì sao?
 + Ngược lại, nếu đa giác 
A1A2An nội tiếp trong đ/tròn 
tâm I ,hãy tìm điểm O cách đều các điểm A1 ,A2,,An?
*Gv gợi ý: nhắc lại đ/nghĩa “trục của đ/tròn ngoại tiếp đa giác”
 GV dẫn dắt và đưa ra chú ý
 HS quan sát
 + HS dự đoán:
 -Mp cắt mặt cầu tại 1 điểm
 -Mp cắt mặt cầu theo giao tuyến là đườngtròn
 -Mp không cắt mặt cầu
 + Hs trả lời: 
 Khoảng cách từ tâm mặt cầu đến mp và bán kính mặt cầu
+HS theo dõi và nắm đ/n
+ HS thảo luận nhóm và đứng tại chỗ trả lời
 *HS nhận định và c/m được các điểm A1 ,A2,,An nằm trên giao tuyến của mp đáy và mặt cầu
*HS nhắc lại đ/n ,từ đó suy ra vị trí điểm O
II/ Vị trí tương đối giữa mp và mặt cầu:
 Sgk/40-41
(bảng phụ )
* Chú ý:
 + Hình chóp nội tiếp trong một mặt cầu khi và chỉ khi đa giác đáy nội tiếp một đ/tròn.
3.Củng cố: (5’):
 + Nắm vững đ/nghĩa m/cầu và cách tìm tâm m/cầu
 + Ví dụ củng cố: Cho hình chóp tứ giác đều S.ABCD. Tìm tâm và bán kính mặt cầu ngoại 
 tiếp hình chóp
 (Gv vẽ hình ,hs thảo luận nhóm và đứng tại chỗ trình bày bài giải)
 4. Bài tập về nhà: (2’) Làm các bài tập 1,2,4/sgk trang 45
 5.Phụ lục : 
 Phiếu HT1: Cho tam giác ABC đều cạnh a.Tìm tập hợp các điểm M trong không gian sao
 cho MA2 + MB2 + MC2 = 2a2
 Phiếu HT2: CMR hình chóp S.A1A2An nội tiếp trong 1 mặt cầu khi và chỉ khi đa giác
 đáy của nó nội tiếp 1 đương tròn
Tiết 2 
I. Tiến trình bài học :
	1. Ổn định :
	2. Kiểm tra bài cũ (5’): nhắc lại định nghĩa mặt cầu, vị trí tương đối giữa mặt cầu và mặt phẳng
	3. Bài mới :
Hoạt động 1 : Vị trí tương đối giữa mặt cầu và đường thẳng
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
10’
*Cho S(O;R) và đt D
Gọi H là hình chiếu của O trên D và d = OH là khoảng cách từ O tới D . Hoàn toàn tương tự như trong trường hợp mặt cầu và mặt phẳng, cho biết vị trí tương đối giữa mặt cầu (S) và đt D ?
* Cho điểm A và mặt cầu S(O;R). Có bao nhiêu đt đi qua A và tiếp xúc với S
 GV dẫn dắt đến dịnh lí
HS hiểu câu hỏi và trả lời
+ Trường hợp A nằm trong (S) :không có tiếp tuyến của (S) đi qua A
+ Trường hợp A nằm trong (S) :có vô số tiếp tuyến của (S) đi qua A, chúng nằm trên mặt phẳng tiếp xúc với (S) tại A.
+ Trường hợp A nằm ngoài (S) : có vô số tiếp tuyến của (S)
III. Vị trí tương đối giữu mặt cầu và đường thẳng
1. Vị trí tương đối : sgk
2. Định lí : sgk
Hoạt động 2 : Diện tích mặt cầu và thể tích khối cầu :
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
5’
Giới thiệu công thức tính diện tích của mặt cầu , thể tích của khối cầu
IV. Diện tích mặt cầu và thể tích của khối cầu.
S = 4PR2
V = 4PR3/3
Hoạt động 3 : Củng cố thông qua ví dụ 
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
5’
GV hướng dẫn để học sinh phát hiện đường kính mặt cầu là AD
VD 1 : bài tập 1/45
10’
GV hướng dẫn để học sinh phát hiện ra tâm của mặt cầu trong 2 câu a và b
A
B
C
D
B’
A’
C’
D’
VD2:Chohình lập phương ABCD.A’B’C’D’cạnh a
 a. Tính diện tích mặt cầu ngoại tiếp hình lập phương
 b. Tính diện tích mặt cầu tiếp xúc với tất cả các mặt của hình lập phương
10’
Hướng dẫn :
SH là trục của DABC
M thuộc SH, ta có : MA = MB = MC. Khi đó gọi I là tâm mặt cầu ngoại tiếp S.ABC, I là giao điểm của SH và đường trung trực của đoạn SA trong mặt phẳng (SAH)
Tính R = SI
Xét DSMI đồng dạng DSHA
Có SI SM 
 = R = SI
 SA SH 
VD3:Tính thể tích khối cầu ngoại tiếp hình chop tam giấc đều có cạch đáy bằng a và chiều cao bằng h
Ngày soạn : 12/08/2008
Tiết 2 	ChuongII§1 	MẶT CẦU,KHỐI CẦU
I. Tiến trình bài học :
	1. Ổn định :
	2. Kiểm tra bài cũ (5’): nhắc lại định nghĩa mặt cầu, vị trí tương đối giữa mặt cầu và mặt phẳng
	3. Bài mới :
Hoạt động 1 : Vị trí tương đối giữa mặt cầu và đường thẳng
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
10’
*Cho S(O;R) và đt D
Gọi H là hình chiếu của O trên D và d = OH là khoảng cách từ O tới D . Hoàn toàn tương tự như trong trường hợp mặt cầu và mặt phẳng, cho biết vị trí tương đối giữa mặt cầu (S) và đt D ?
* Cho điểm A và mặt cầu S(O;R). Có bao nhiêu đt đi qua A và tiếp xúc với S
 GV dẫn dắt đến dịnh lí
HS hiểu câu hỏi và trả lời
+ Trường hợp A nằm trong (S) :không có tiếp tuyến của (S) đi qua A
+ Trường hợp A nằm trong (S) :có vô số tiếp tuyến của (S) đi qua A, chúng nằm trên mặt phẳng tiếp xúc với (S) tại A.
+ Trường hợp A nằm ngoài (S) : có vô số tiếp tuyến của (S)
III. Vị trí tương đối giữu mặt cầu và đường thẳng
1. Vị trí tương đối : sgk
2. Định lí : sgk
Hoạt động 2 : Diện tích mặt cầu và thể tích khối cầu :
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
5’
Giới thiệu công thức tính diện tích của mặt cầu , thể tích của khối cầu
IV. Diện tích mặt cầu và thể tích của khối cầu.
S = 4PR2
V = 4PR3/3
Hoạt động 3 : Củng cố thông qua ví dụ 
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
5’
GV hướng dẫn để học sinh phát hiện đường kính mặt cầu là AD
VD 1 : bài tập 1/45
10’
GV hướng dẫn để học sinh phát hiện ra tâm của mặt cầu trong 2 câu a và b
A
B
C
D
B’
A’
C’
D’
VD2:Chohình lập phương ABCD.A’B’C’D’cạnh a
 a. Tính diện tích mặt cầu ngoại tiếp hình lập phương
 b. Tính diện tích mặt cầu tiếp xúc với tất cả các mặt của hình lập phương
10’
Hướng dẫn :
SH là trục của DABC
M thuộc SH, ta có : MA = MB = MC. Khi đó gọi I là tâm mặt cầu ngoại tiếp S.ABC, I là giao điểm của SH và đường trung trực của đoạn SA trong mặt phẳng (SAH)
Tính R = SI
Xét DSMI đồng dạng DSHA
Có SI SM 
 = R = SI
 SA SH 
VD3:Tính thể tích khối cầu ngoại tiếp hình chop tam giấc đều có cạch đáy bằng a và chiều cao bằng h
ChuongII§1 §. BÀI TẬP MẶT CẦU - KHỐI CẦU
(Chương trình nâng cao)
Ngày soạn : 10/08/2008	
Số tiết : 2 tiết
I. Mục tiêu :
 	1. Kiến thức :
 	 - Nắm định nghĩa mặt cầu, hình cầu, vị trí tương đối giữa mặt cầu và mặt phẳng, giữa mặt cầu và đường thẳng.
	2. Kỹ năng : 
	- Nhận biết được 1 số hình đa diện có mặt cầu ngoại tiếp
	- Xác định được tâm và bán kính mặt cầu
	- Tính được diện tích mặt cầu và thể tích khối cầu
	3. Tư duy, thái độ :
	- Rèn luyện khả năng tư duy sáng tạo
II. Chuẩn bị :
Giáo viên : Hệ thống bài tập và câu hỏi gợi mở
Học sinh : Chuẩn bị kiến thức cũ liên quan đến trục của đường tròn ngoại tiếp tam giác, mặt cầu, khối cầu, làm bài tập ở nhà
III. Phương pháp : Vấn đáp, gợi mở, thuyết giảng.
IV. Tiến trình lên lớp : 
Ổn định lớp :
Kiểm tra bài cũ :
 	- Định nghĩa mặt cầu, nêu công thức tính diện tích mặt cầu, thể tích khối cầu 
	3. Bài mới : 
Hoạt động 1 :
 	 Xác định tâm, bán kính của mặt cầu thỏa mãn một số điều kiện cho trước.
TG
Họat động của GV
Họat động HS
Ghi bảng
- Một mặt cầu được xác định khi nào?
- 4 điểm A, B, C, D đồng phẳng ?
Nếu A, B, C, D đồng phẳng ?
- B tóan được phát biểu lại :Cho hình chóp ABCD có 
 . AB ┴ (BCD) BC ┴ CD
Cm A, B, C, D nằm trên 1 mặt cầu
...
- Bài toán đề cập đến quan hệ vuông , để cm 4 điểm nằm trên một mặt cầu ta cm ?
- Gọi hs tìm bán kính
+ Cho 3 điểm A, B, C phân biệt có 2 khả năng :
 . A, B, C thẳng hàng
 . A, B, C không thẳng hàng
- có hay không mặt cầu qua 3 điểm thẳng hàng ?
-Có hay không mặt cầu qua 3 điểm không thẳng hàng ?
+ Giả sử có một mặt cầu như vậy thử tìm tâm của mặ t cầu.
+ Trên đtròn lấy 3 điểm A, B, C phân biệt và lấy điểm S (ABC)
+ Có kết luận gì về mặt cầu qua 4 điểm không đồng phẳng.
- Biết tâm và bán kính.
-các điểm cùng nhìn một đoạn thẳng dưới 1 góc vuông.
- Có B, C cùng nhìn đoạn AD dưới 1 góc vuông → đpcm
- R = 
- Không có mặt cầu qua 3 điểm thẳng hàng
- Gọi I là tâm của mặt cầu thì IA=IB=IC
I d : trục ABC
- Trả lời : 
+ Gọi I là tâm của mặt cầu có :
. IA=IB=IC 
I d : trục ABC 
. IA=IS S: mp trung trực của đoạn AS
 I = d.
Bài 1 : (Trang 45 SGK)
Trong không gian cho 3 đoạn thẳng AB, BC, CD sao cho AB ┴ BC,
 BC ┴ CD, CD ┴ AB. 
CMR có mặt cầu đi qua 4 điểm A, B, C, D. Tính bk mặt cầu đó, nếu AB=a, BC=b, CD=c.
Nếu A,B,C,D đồng phẳng
 (!)
→ A, B, C, D không đồng phẳng:
A
B
C
D
Bài 2 /Trang 45 SGK
a. Tìm tập hợp tâm các mặt cầu đi qua 3 điểm phân biệt A, B, C cho trước
Củng cố : Có vô số mặt cầu qua 3 điểm không thẳng hàng , tâm của mặt cầu nằm trên trục của ABC.
b. Có hay không một mặt cầu đi qua 1 đtròn và 1 điểm năm ngoài mp chứa đtròn
+ Có duy nhất một mặt cầu qua 4 điểm không đồng phẳng
Hoạt động 2 :
 	 Tính diện tích và thể tích mặt cầu và khối cầu ngoại tiếp hình chóp
TG
Họat động của GV
Họat động HS
Ghi bảng
+ Công thức tính thể tích ?
+ Phát vấn hs cách tính
+ Gọi hs xác định tâm của mặt cầu.
+ Vì SA, SH nằm trong 1 mp nên chỉ cần dựng đường trung trực của đoạn SA
+ Gọi hs tính bkính và thể tích. 
- 
- Tìm tâm và bkính .
 Theo bài 2 :
Gọi O là tâm của mặt cầu thì O =d
Với d là trục ABC.
: mp trung trực của SA
+ Sử dụng tứ giác nội tiếp đtròn
Bài 3: Tính thể tích khối cầu ng ... vẽ hình, tính toán cho học sinh. 
 + Về tư duy và thái độ:
- Rèn luyện tính tích cực, sáng tạo, cẩn thận.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên:Giáo án, bảng phụ, phiếu học tập.
	+ Học sinh: Dụng cụ học tập, SGK,...
III. Phương pháp: Gợi mở, giải quyết vấn đề.
IV. Tiến trình bài học:
Tiết 1:
	1. Ổn định tổ chức:
	2. Kiểm tra bài cũ: (7 ph)
CH1: ĐN mặt cầu, Phương pháp chứng minh 1 điểm thuộc mặt cầu . Điều kiện mặt cầu ngoại tiếp hình chóp.
CH2: Ghi các công thức tính diện tích và thể tích các mặt và khối:nón, trụ, cầu.
Mặt nón-Khối nón
Mặt trụ-Khối trụ
Mặt cầu-Khối cầu
Diện tích 
Sxq=
Sxq=
S=
Thể tích
V=
V=
V=
	GV chính xác hóa kiến thức, đánh giá và ghi điểm.
	3. Bài mới:
	 * Hoạt động 1: Phát phiếu học tập 1 (15ph)
Phiếu học tập 1
Câu 1: Xét tính đúng sai của các mđ sau:
Hình chóp có mặt cầu ngoại tiếp khi chỉ khi đáy của nó là đa giác nội tiếp một đường tròn
Hình lăng trụ tam giác có cạnh bên vuông góc mặt đáy thì nội tiếp được trong một mặt cầu.
Qua điểm A cho trước có vô số tiếp tuyến của mặt cầu S(O,R)
Có vô số đường thẳng tiếp xúc mặt cầu S(O,R) tại 1 điểm.
Câu 2: Xét tính đúng sai của các mđ sau:
Mọi tứ diện luôn có mặt cầu ngoại tiếp.
Mọi hình chóp có cạnh bên bằng nhau đều có mặt cầu ngoại tiếp.
Mọi hình hộp đứng đều có mặt cầu ngoại tiếp.
4. Mọi hình hộp chữ nhật đều có mặt cầu ngoại tiếp.
Câu 3: Chứng minh trong số các hình hộp nội tiếp 1 mặt cầu bán kính R thì hình lập phương có thể tích lớn nhất.
Câu 4: Cho tứ diện đều ABCD có cạnh bằng a. Tính bán kính mặt cầu tiếp xúc các cạnh của tứ diện.
.
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
15’
-Chia lớp thành 4 nhóm . Mỗi nhóm giải quyết 1 câu
- Nhận xét đánh giá.
Đáp án:
Đ, Đ, S , Đ
Đ, S, S , Đ
3.Gọi a,b,c là 3 cạnh hình hcn. Có a2+b2+c2=(2R)2 (1)
V=abc, Từ (1) a2b2c2 lớn nhất khi a = b = c. Vậy V lớn nhất khi hhộp là hình lphương 
4. Nx: Trong tứ dịên đều ABCD các đoạn thẳng nối trung điểm các cạnh đối là các đường vuông góc chung, bằng nhau và chúng đồng quy tại trung điểm O của mỗi đường nên là tâm mặt cầu tx các cạnh tứ diện,vậy bkính mặt cầu R= 
-Tự giải và thảo luận câu nhóm mình và các câu còn lại 
Chia bảng thành 4 phần , HS lên giải
*Hoạt động 2: Sửa BT2 
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
20’
Nêu đề:
BT2: XĐ tâm , Bk mặt cầu ngoại tiếp h/c SABC biết SA=SB=SC=a, góc ASB=60o,BSC=90o, CSA=120o.
Hoạt động 2.1:
CH1: Gọi I là tâm mặt cầu , nêu cách tìm I?
-Hãy XĐ điểm H?
(Đặc điểm ∆ ABC ? )
 I thuộc SH
-Để ý SA=SB=SC=a, SH=a/2. tìm I?
- Vẽ hình (GV hướng dẫn nếu cần)
-I cách đều S,A, B,C
-nx: SA=SB=SC, S thuộc trục ∆ABC. Gọi H là tâm cúa ∆ABC HA=HB=HC, I thuộc SH 
-Nx: tam giác ABC vuông tại B
Nên H là trung điểm AC và SH=a/2
- Gọi I đ/x S qua H thì IA=IB=IC=IS=a. I là tâm mặt cầu 
 S
 H C 
A
 B
Giải:
Gt có AB=a, BC=
AC=
Nên ∆ABC vuông tại B
Gọi SH là đcao h/c vì SA=SB=SC nên HA=HB=HC vậy H là trung điểm AC 
Gọi I đ/x H qua S thì IA=IB=IC=IS=a. I là tâm mặt cầu , bk R=a
Tiết 2
*Hoạt động 3: BT 5,6 SGK/tr63
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
15’
8’
+ Nêu đề.
BT5 : Cho ∆ ABCvuông tại A, AB = c, AC = b. Gọi V12,V2,V3 là các khối t/x sinh bởi tgiác đó (kể cả các điểm trong) khi lần lượt quay quanh AB,AC, BC.
a/ Tính V1, V2, V3 theo b, c.
b/ C/m 
Hoạt động 3.1:
-Hãy tính V khối nón khi quay ∆ ABC quanh AB V1: (chiều cao, bk đáy) --tương tự V2 
-Tính V3?
b/ Tính 
BT 6(SGK) (HDẫn)
-Xđ trục đ/x 
-Gọi S là giao điểm AD, BC , nx S với OO’?
- Tính V khối t/x
Tính Stp
+ HS vẽ hình
+ Lắng nghe và trả lời.
- V1 khối nón khi quay ∆ ABC quanh AB có: chiều cao c, bk đáy b
- V2 tương tự
- Chia V3 thành 2 khối nón sinh bởi ∆ABH và ∆ ACH
V3=V∆ABH +V∆ACH tính được
- HS lên biến đổi
Vẽ hình
OO’
- V=V∆SCD -V ∆SAB 
= 
-Stp = 
B
 C
 *Hoạt động 4: Giải bài tập theo nhóm (15’)
Phiếu học tập 2
Câu 5: Một khối trụ có bán kính đáy a , chiều cao 2a. Tính thể tích khối cầu ngoại tiếp khối trụ.
Câu 6: Cho hình nón có đường sinh bằng đường kính đáy và bằng 2. Tính bk mặt cầu ngoại tiếp hình nón.
Câu 7: Một hình nón có đường sinh = a và góc ở đỉnh = 90o cắt hình nón bằng mp(P) qua đỉnh sao cho góc giữa (P) và đáy hình nón bằng 60o . Tính diện tích thiết dịên.
Câu 8: Cho hình chóp tứ giấc đều có cạnh đáy bằng a, cạnh bên tạo mặt đáy góc 600. Tính diện tích toàn phần của hình nón ngoại tiếp hình chóp .
4/ Củng cố: 7’
Phiếu học tập 3
Câu 9: Cho 2 điểm A, B phân biệt. Tìm tập hợp các điểm M sao cho diện tích tam giác MAB không đổi.
Câu 10: Cho 2 điểm A, B phân biệt, một đường thẳng l thay đổi qua A và cách B một khoảng AB/2. Gọi H là hình chiếu B trên l. Tìm tập hợp H
Câu 11: Với điểm O cố định thuộc mp(P) cho trước, xét đường thẳng l thay đổi qua O và tạo (P) góc 30o. Tìm tập hợp các đường thẳng l 
Phiếu học tập 1
Câu 1: Xét tính đúng sai của các mđ sau:
Mọi tứ diện luôn có mặt cầu ngoại tiếp.
Mọi hình chóp có cạnh bên bằng nhau đều có mặt cầu ngoại tiếp.
Mọi hình hộp đứng đều có mặt cầu ngoại tiếp.
Mọi hình hộp chữ nhật đều có mặt cầu ngoại tiếp.
Câu 2: Xét tính đúng sai của các mđ sau:
Hình chóp có mặt cầu ngoại tiếp khi chỉ khi đáy của nó là đa giác nội tiếp một đường tròn
Hình lăng trụ tam giác có cạnh bên vuông góc mặt đáy thì nội tiếp được trong một mặt cầu.
Qua điểm A cho trước có vô số tiếp tuyến của mặt cầu S(O,R)
Có vô số đường thẳng tiếp xúc mặt cầu S(O,R) tại 1 điểm.
Câu 3: Chứng minh trong số các hình hộp nội tiếp 1 mặt cầu bán kính R thì hình lập phương có thể tích lớn nhất.
Câu 4: Cho tứ diện đều ABCD có cạnh bằng a. Tính bán kính mặt cầu tiếp xúc các cạnh của tứ diện.
	Phiếu học tập 2
Câu 5: Một khối trụ có bán kính đáy a , chiều cao 2a. Tính thể tích khối cầu ngoại tiếp khối trụ.
Câu 6: Cho hình nón có đường sinh bằng đường kính đáy và bằng 2. Tính bk mặt cầu ngoại tiếp hình nón.
Câu 7: Một hình nón có đường sinh = a và góc ở đỉnh = 90o cắt hình nón bằng mp(P) qua đỉnh sao cho góc giữa (P) và đáy hình nón bằng 60o . Tính diện tích thiết dịên.
Câu 8: Cho hình chóp tứ giấc đều có cạnh đáy bằng a, cạnh bên tạo mặt đáy góc 600. Tính diện tích toàn phần của hình nón ngoại tiếp hình chóp .
Phiếu học tập 2
Câu 9: Cho 2 điểm A, B phân biệt. Tìm tập hợp các điểm M sao cho diện tích tam giác MAB không đổi.
Câu 10: Cho 2 điểm A, B phân biệt, một đường thẳng l thay đổi qua A và cách B một khoảng AB/2. Gọi H là hình chiếu B trên l. Tìm tập hợp H
Câu 11: Với điểm O cố định thuộc mp(P) cho trước, xét đường thẳng l thay đổi qua O và tạo (P) góc 30o. Tìm tập hợp các đường thẳng l 
GIÁO ÁN
KIỂM TRA 1 TIẾT
Chương II (HH): Mặt cầu, mặt trụ, mặt nón.
I. Mục đích, yêu cầu:
- Nhằm đánh giá kết quả tiếp thu của học sinh qua nội dung kiến thức đã học.
- Học sinh cần tập trung làm tốt bài kiểm tra qua đó rèn luyện tư duy logic, linh hoạt, sáng tạo.
II. Mục tiêu:
- Nhằm giúp học sinh củng cố và ôn tập lại những kiến thức cơ bản về mặt cầu, mặt trụ, mặt nón, qua đó biết vận dụng các công thức tính diện tích xung quanh, thể tích của chúng vào giải bài tập. 
III. Đề:
Cho hình nón có bán kính đáy R và đường sinh tạo với mặt đáy một góc 600.
1/ Tính diện tích hình xung quanh và thể tích của hình nón.
2/ Tính bán kính của mặt cầu nội tiếp trong hình nón, suy ra thể tích khối cầu đó.
3/ Một hình trụ được gọi là nội tiếp hình nón nếu một đường tròn đáy nằm trên mặt xung quanh của hình nón, đáy còn lại nằm trên mặt đáy của hình nón.
Biết bán kính của hình trụ bằng một nửa bán kính đáy của hình nón. Tính thể tích khối trụ.
4/ Tìm hình trụ nội tiếp hình nón sao cho thể tích của khối trụ đạt giá trị lớn nhất.
III. Đáp án và biểu điểm:
* Hình vẽ đúng: 	(1đ).
* Câu 1: (3đ).
 đều 	(1đ).
. 	(1đ).
. 	(1đ).
* Câu 2 (3đ).
Tâm O’ của mặt cầu thuộc SO
Bán kính mặt cầu r = O’O. (1đ).
. 	(1đ). 
. V= 	(1đ).
* Câu 3 (2đ).
N trung điểm OB.
ON bán kính hình trụ: ON= 	(0,5đ).
 	(0,5đ).
.V= 	(1đ).
* Câu 4: (1đ) Gọi x là bán kính hình trụ nội tiếp.
. x = OC (0 < x < R) và BC = R – x.
. CD // SO chiều cao CD = 
Thể tích khối trụ.
 	(0,5đ).
x
V’(x)
V(x)
2R
 3
R
- 0 +
 - 0 + 0 - 
Vậy thể tích khối trụ đạt giá trị lớn nhất khi x= (tức là bán kính hình trụ bằng (0,5đ).
ĐỀ KIỂM TRA 1 TIẾT
Hình học 12 (Nâng cao)
Chương II: MẶT CẦU - MẶT TRỤ - MẶT NÓN
Mục đích, yêu cầu:
Giáo viên:
Đánh giá kết quả học tập của học sinh và rút ra kinh nghiệm trong công tác soạn giảng.
Học sinh:
Nắm vững kiến thức đã học trong chương II.
Xem lại các bài tập trong SGK và sách bài tập.
Mục tiêu:
Học sinh vận dụng được lí‎ thuyết (định nghĩa, khái niệm, định l‎í, ...) và các công thức về diện tích, thể tích.
Ma trận đề:
Mức độ
Nhận biết
Thông hiểu
Vận dụng
Tổng cộng
Tên bài
Mặt cầu –khối cầu
1
0.4
1
0.4
1
0.4
1
3
4
4.2
Khái niệm mặt tròn xoay
1
0.4
1
0.4
2
0.8
Mặt trụ, hình trụ, khối trụ
1
0.4
1
0.4
2
0.8
Mặt nón
1
0.4
1
0.4
1
0.4
1
3
4
4.2
Tổng cộng
3
1.2
4
1.6
3
1.2
2
6
12
10
Đề kiểm tra:
A. Trắc nghiệm: (4đ). Hãy chọn đáp án đúng nhất.
Trong các mệnh đề sau, mệnh đề nào đúng?
A. Mọi hình hộp đều có mặt cầu ngoại tiếp.
B. Mọi hình hộp đứng đều có mặt cầu ngoại tiếp.
C. Mọi hình hộp có một mặt bên vuông với đáy đều có mặt cầu ngoại tiếp.
D. Mọi hình hộp chữ nhật đều có mặt cầu ngoại tiếp.
Mặt cầu ngoại tiếp tứ diện đều cạnh a = 1 cm, có diện tích xung quanh là:
A. cm2.	B. cm2.	C. cm2.	D. cm2.
Diện tích xung quanh của hình trụ ngoại tiếp hình lập phương cạnh 2cm là:
A. cm2.	B. cm2.	C. cm2.	D. cm2.
Cho hình nón có chiều cao h = 3cm, góc giữa trục và đường sinh là 600. Tính thể tích khối nón?
A. cm3.	B. cm3.	C. cm3.	D. cm3.
Cho 2 điểm A, B phân biệt. Tập các điểm M sao cho diện tích tam giác MAB không đổi là:
A. Hai đường thẳng song song.	B. Một mặt cầu.
C. Một mặt trụ.	D. Một mặt nón.
Hình trụ có thiết diện qua trục là hình vuông cạnh a = 2cm có thể tích là:
A. cm3.	B. cm3.	C. cm3.	D. cm3.
Hình nón có thiết diện qua trục là tam giác đều cạnh a = cm có thể tích là:
A. cm3.	B. cm3.	C. cm3.	D. cm3.
Mặt cầu ngoại tiếp hình lập phương cạnh a = 1cm có diện tích xung quanh là:
A. cm2.	B. cm2.	C. cm2.	D. cm2.
Một hình trụ có bán kính đáy bằng a, đường cao OO’ = a. Một đoạn thẳng AB thay đổi sao cho góc giữa AB và trục hình trụ bằng 300, A và B thuộc hai đường tròn đáy của hình trụ. Tập hợp các trung điểm I của AB là:
A. Một mặt trụ.	B. Một mặt cầu.
C. Một đường tròn.	D. Một mặt phẳng.
Hình nón có thiết diện qua trục là tam giác đều cạnh a = 2cm có diện tích xung quanh là:
A. cm2.	B. cm2.	C. cm2.	D. cm2.
B. Tự luận: (6đ)
Bài 1: Cho hình chóp S.ABC, biết: SA = SB = SC = a; = 600; = 900; = 1200.
a. Xác định tâm, bán kính mặt cầu (S) ngoại tiếp hình chọp S.ABC.
b. Xác định diện tích của mặt cầu (S) và thể tích của khối cầu (S).
Bài 2: Cho hình nón tròn xoay đỉnh S, chiều cao 2R, đáy là hình tròn tâm O bán kính R. Gọi I là điểm nằm trên mặt phẳng đáy sao cho OI = 2R. Trên đường tròn tâm O vẽ bán kính OA OI, IA cắt đường tròn tại B.
a. Tính V và Sxq của hình nón.
b. Gọi M là điểm di động trên SA, IM cắt mặt nón tại N. Chứng minh N di động trên một đoạn thẳng cố định.

Tài liệu đính kèm:

  • docchuong 2.doc