Tiết 1
§1.KHÁI NIỆM VỀ KHỐI ĐA DIỆN (Tiết 1/2)
I. MỤC TIÊU:
1. Về kiến thức: - Hiểu được thế nào là một khối đa diện và hình đa diện.
- Hiểu được các phép dời hình trong không gian
- Hiểu được hai đa diện bằng nhau bằng các phép biến hình trong không gian
-Hiểu được rằng đối với các đa diện phức tạp ta có thể phân chia thành các đa diện đơn giản
2. Về kĩ năng: - Biết nhận dạng được một khối đa diện
-Biết chứng minh hai khối đa diện bằng nhau nhờ phép dời hình
- Biết phân chia và lắp ghép các khối đa diện trong không gian
3. Về tư duy và thái độ: Toán học bắt nguồn từ thực tế, phục vụ thực tế. Biết quy lạ về quen. Chủ động phát hiện, chiếm lĩnh tri thức mới. Có tinh thần hợp tác trong học tập
Tiết 1 Ngµy so¹n 25-8 -2010 §1.KHÁI NIỆM VỀ KHỐI ĐA DIỆN (Tiết 1/2) I. MỤC TIÊU: 1. Về kiến thức: - Hiểu được thế nào là một khối đa diện và hình đa diện. - Hiểu được các phép dời hình trong không gian - Hiểu được hai đa diện bằng nhau bằng các phép biến hình trong không gian -Hiểu được rằng đối với các đa diện phức tạp ta có thể phân chia thành các đa diện đơn giản 2. Về kĩ năng: - Biết nhận dạng được một khối đa diện -Biết chứng minh hai khối đa diện bằng nhau nhờ phép dời hình - Biết phân chia và lắp ghép các khối đa diện trong không gian 3. Về tư duy và thái độ: Toán học bắt nguồn từ thực tế, phục vụ thực tế. Biết quy lạ về quen. Chủ động phát hiện, chiếm lĩnh tri thức mới. Có tinh thần hợp tác trong học tập II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ CỦA HỌC SINH: 1. Chuẩn bị của giáo viên: - Giáo án, đồ dùng dạy học - Bảng phụ 2. Chuẩn bị của học sinh: - Sách giáo khoa, vở nháp, vở ghi và đồ dùng học tập - Kiến thức cũ về định nghĩa hình lăng trụ và hình chóp; các phép biến hình, phép dời hình trong mặt phẳng ở lớp 11 III. TIẾN TRÌNH LÊN LỚP: 1. Ổn định lớp: Kiểm tra sĩ số 2. Kiểm tra bài cũ: (5') Câu hỏi : Hãy nêu định nghĩa hình lăng trụ và hình chóp? HĐ1: (Treo bảng phụ 1) (10') Trên bảng phụ này có vẽ hình chóp S.ABCDE và hình lăng trụ ABCDE.A'B'C'D'E' (như hình 1.4SGK) Để dẫn dắt đến khái niệm khối chóp và khối lăng trụ và các khái niệm liên quan Tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng 5' 3' 2' HĐ từng phần 1: Hày chỉ rõ hình chóp S.ABCD là hình giời hạn những mặt nào? +Hình chóp chia không gian làm 2 phần phần trong và phần ngoài dẫn dắt đến khái niệm khối chóp là là phần không gian giới hạn bởi hình chóp kể cả hình chóp đó (tương tự ta có khối lăng trụ +Hày phát biểu cho khối chóp cụt HĐ2: Các khái niệm của hình chóp ,lăng trụ vẫn đúng cho khối chóp và khối lăng trụ H/s hãy trình bày +Tên của khối lăng trụ, khói chóp +Đỉnh,cạnh,mặt bên,mặt đáy,cạnh bên,cạnh đáy của khối chóp,khối lăng trụ +Giáo viên gợi ý về điểm trong và điểm ngoài của khối chóp,khối chóp cụt H/s đánh giá được các mặt giới hạn của hình chóp mà giáo viên đã nêu +H/s thảo luận và trả lời cho khối chóp cụt +Học sinh thảo luận để hoàn thành các khái niệm mà giáo viên đã đặt ra +H/s phát biểu thé nào là điểm trong và điểm ngoài của khối lăng trụ,khối chóp I/KHỐI LĂNG TRỤ VÀ KHỐI CHÓP khối lăng trụ (khối chóp) là phần không gian được giới hạn bởi một hình lăng trụ (hình chóp) kể cả hình lăng trụ (hình chóp) ấy. +Khối chóp cụt (tương tự). +Điểm trong,điểm ngoài của khối chóp,khói lăng trụ (SGK) HĐ2:(15') (hình thành khái niệm về hình đa diện và khối đa diện) Dùng bảng phụ như trên và kết hợp sách giáo khoa tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng 5' 3' 2' HĐtp1:Kể tên các mặt của hình chóp S.ABCDE và hình lăng trụ ABCDE.A'B'C'D'E' +Giáo viên nhận xét,đánh giá +Hình chóp và hình lăng trụ trên có những nét chung nào? +HĐtp2:Nhận xét gì về số giao điểm của các cặp đa giác sau: AEE’A’ và BCC’B’; ABB’A’ và BCC’B’; SAB và SCD ? HĐtp3: Mỗi cạnh của hình chóp hoặc của lăng trụ trên là cạnh chunh của mấy đa giác +Từ những nhận xét trên Giáo viên tổng quát hoá cho hình đa diện +Tương tự khối chóp và khối lăng trụ.Hãy phát biểu khái niệm về khối đa diện +Thảo luận và thực hiện hoạt động trên +Học sinh thảo luận phát hiện các hình trên đều có chung là những hình không gian được tạo bởi một số hửu hạn đa giác +Thảo luận và đi đến nhận xét:: không có điểm chung; có 1 cạnh chung; có 1 điểm chung +Kết luận:là cạnh chung của hai đa giác +Kết luận:là cạnh chung của hai đa giác II/KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN 1/Khái niệm về hình đa diện +các hình trên đều có chung là những hình không gian được tạo bởi một số hữu hạn đa giác +Hai đa giác phân biệt chỉ có thể hoặc không có điểm chung nào hoặc chỉ có một điểm chung hoặc chỉ có một cạnh chung +Mỗi cạnh của đa giác nào cũng là cạnh chung của hai đa giác +Hình đa diện (đa diện)là hình được tạo bởi hữu hạn đa giác thoả mãn hai tính chất trên 5' +Cho học sinh nghiên cứu SGK để nắm được các khái niệm điểm trong,điểm ngoài,miền trong,miền ngoàicủa khối đa diện +Cách gọi đỉnh, cạnh, mặt, điểm trong, điểm ngoài của khối đa diện giống như cách gọi của khối lăng trụ và khối chóp. + Giới thiệu cách nhận dạng những khối nào đgl khối đa diện, những khối nào không phải là những khối đa diện (VD SGK – tr.7) +Thảo luận HĐ3 sgk trang 8 +H/s phát biểu lại khái niệm hình đa diện +Trả lời: Khối đa diện là phần không gian được giới hạn bởi một hình đa diện, kể cả hình đa diện đó. H/s thảo luận vì sao các hình trong ví dụ là những khối đa diện 2/Khái nệm về khối đa diện (sgk) HĐ3 (10'): Tiếp cận phép dời hình trong không gian Tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng 5' 5' HĐtp1:4 phiếu học tập +Tìm ảnh của đoạn thẳng ABqua các ; +Tìm ảnh của đoạn thẳng ABqua các Đo; +Tìm ảnh của đoạn thẳng ABqua các Đd +Tìm2 điểm A'B' sao mặt phẳng (P) là mặt phẳng trng trực của đoạn AA';BB' Hđộng này thông qua 4 phiếu học tập giao cho 8 nhóm học tập +Giáo viên nhận xét kết quả của các nhóm +Giáo viên giới thiệu 3 phép;Đo; Đdtrên là phép dời hình trong mặt phẳng +H/s nhắc lại khái niệm phép dời hình trong mặt phẳng +Giáo viên hình thành khái niệm phép dời hình trong không gian +Hãy cho ví dụ về phép dời hình trong không gian +Tương tự các phép dời hình trong mặt phẳng ta có hai nhận xét về phép dời hình trong không gian +Các nhóm làm việc và đại diện của mỗi nhóm lên treo kết quả của nhóm mình lên bảng +H/s sẽ phát hiện đó là các phép -Tịnh tiến theo ; -Phép đối xứng qua mặt phẳng (P) -Phép đối xứng tâm O -Phép đối xứng qua mặt đường thẳng d III/HAI ĐA DIỆN BẰNG NHAU 1/Phép dời hình trong không gian Trong không gian, quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất đgl một phép biến hình trong không gian * Phép biến hình trong không gian đgl phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tuỳ ý +Các phép dời hình trong không gian(Xem sách giáo khoa) a/ Thực hiện liên tiếp các phép dời hình sẽ được một phép dời hình b) Phép dời hình biến đa diện H thành đa diện H’, biến đỉnh, cạnh, mặt của H thành đỉnh, cạnh, mặt tương ứng của H’ Tiết 2: Ngµy so¹n 29/8/2010 §1.KHÁI NIỆM VỀ KHỐI ĐA DIỆN (Tiết 2) I. MỤC TIÊU: 1. Về kiến thức: - Hiểu được thế nào là một khối đa diện và hình đa diện. - Hiểu được các phép dời hình trong không gian - Hiểu được hai đa diện bằng nhau bằng các phép biến hình trong không gian -Hiểu được rằng đối với các đa diện phức tạp ta có thể phân chia thành các đa diện đơn giản 2. Về kĩ năng: - Biết nhận dạng được một khối đa diện -Biết chứng minh hai khối đa diện bằng nhau nhờ phép dời hình - Biết phân chia và lắp ghép các khối đa diện trong không gian 3. Về tư duy và thái độ: Toán học bắt nguồn từ thực tế, phục vụ thực tế. Biết quy lạ về quen. Chủ động phát hiện, chiếm lĩnh tri thức mới. Có tinh thần hợp tác trong học tập II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ CỦA HỌC SINH: 1. Chuẩn bị của giáo viên: - Giáo án, đồ dùng dạy học - Bảng phụ 2. Chuẩn bị của học sinh: - Sách giáo khoa, vở nháp, vở ghi và đồ dùng học tập - Kiến thức cũ về định nghĩa hình lăng trụ và hình chóp; các phép biến hình, phép dời hình trong mặt phẳng ở lớp 11 III. TIẾN TRÌNH LÊN LỚP: Ổn định lớp: Kiểm tra sỉ số HĐ1: (treo bảng phụ 2) Tìm ảnh của hình chóp S.ABC bằng cách thực hiện liên tiếp hai phép dời hình phép đối xứng trục d và phép tịnh tiến Tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng 5' 3' +Từ kết quả của học sinh giáo viên nhận xét có một phép dời hình biến hình chóp S.ABC thành hình chóp S''A''B''C'' +Tương tự như trong mặt phẳng giáo viên nhắc lại Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia +Các nhóm làm việc và đại diện của mỗi nhóm lên treo kết quả của nhóm mình lên bảng 2/Hai hình bằng nhau +Định nghĩa (sgk) +đặc biệt:hai đa diện được gọi là bằng nhau nếu có một phép dời hình biến đa diện này thành đa diện kia HĐ2: (7') Thực hiện hoạt động 4 SGK trang 10 tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng 7' +Giáo viên gợi ý: Phát hiện phép dời hình nào biến lăng trụ ABD.A'B'D'thành lăng trụ BCDB'C'D' +nhận xét gì về điểm O là giao điểm của các đường chéo +các nhóm làm việc +Nhận xét :Gọi O là giao điểm các dường chéo A'C,AC' thì O chính là trung điểm của các đoạn A'C,AC',B'D,BD' Gọi O là giao điểm các dường chéo A'C,AC' thì O chính là trung điểm của các đoạn A'C,AC',B'D,BD' Như vậy có một phép đối xứng tâm O biến hình lăng trụ ABD.A'B'D'thành lăng trụ BD.B'C'D' HĐ3 :(5')(Phân chia và lắp ghép các khối đa diện) Quan sát Hình 1.13 SGK trang 11 và phát biểu về phân chia hay lắp ghép các khối đa diện lại với nhau tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng Cho h/s quan sát 3 hình (H),(H1);(H2) +(H) là hợp của (H1)và (H2) +(H1)và (H2) không có điểm chung trong nào hai khối đa diện H1 và H2 không có chung điểm trong nào ta nói có thể chia được khối đa diện H thành hai khối đa diện H1 và H2 hay có thể lắp ghép hai khối đa diện H1 và H2 với nhau để được khối đa diện H HĐ4 (15'): Dùng các mặt phẳng chia khối lập phương ABCD.A'B'C'D' thành sáu khối tứ diện tg Hoạt động cuả Thầy Hoạt động của Trò Ghi bảng +Gợi ý: -Chia khối lập phương thành hai khối lăng trụ tam giác -Chia mỗi khối lăng trụ tam giác thành 3 khối tứ diện +Giáo viên nhận xét +Phân tích và chỉ rõ hơn bằng ví dụ SGK +Các nhóm thực hiện theo gợi ý của giáo viên +các nhóm trình bày cách chia của nhóm mình +Nhận xét: Một khối đa diện bất kỳ luôn có thể phân chia thành những khối tứ diện PHẦN BÀI TẬP KHÁI NIỆM KHỐI ĐA DIỆN * Câu hỏi 1: (GV treo bảng phụ_Chứa hình a, b, c). Trong các hình sau, hình nào là hình đa diện, hình nào không phải là hình đa diện? (b) (a) (d) (c) - Hãy giải thích vì sao hình (b) không phải là hình đa diện? * Câu hỏi 2: (GV treo bảng phụ_Chứa hình d). Cho hình lập phương như hình vẽ. Hãy chia hình lập phương trên thành hai hình lăng trụ bằng nhau? - HS nhận xét. - GV nhận xét và cho điểm. 3. PHẦN BÀI TẬP Hoạt động 1: Giải BT 4 trang 12 SGK: “Chia khối lập phương thành 6 khối tứ diện bằng nhau”. TG Hoạt động của GV Hoạt động của HS Ghi bảng 13’ - GV treo bảng phụ có chứa hình lập phương ở câu hỏi KTBC. - Gợi mở cho HS: + Ta chỉ cần chia hình lập phương thành 6 hình tứ diện bằng nhau. + Theo câu hỏi 2 KTBC, các em đã chia hình lập phương thành hai hình lăng trụ bằng nhau. + CH: Để chia được 6 hình tứ diện bằng nhau ta cần chia như thế nào? - Gọi HS trả lời cách chia. - Gọi HS nhận xét. - Nhận xét, chỉnh sửa. - Theo dõi. - Phát hiện ra chỉ cần chia mỗi hình lăng trụ thành ba hình tứ diện bằng nhau. - Suy nghĩ để tìm cách chia hình lăng trụ ABD.A’B’D’ thành 3 tứ diện bằng nhau. - Nhận xét trả lời của bạn. Bài 4/12 SGK: - Ta chia lăng trụ ABD.A’B’D’ thành 3 tứ diện BA’B’D’, AA’BD’ và ADBD’. Phép đối xứng qua (A’BD’) biến tứ diện BA’B’D’ thành tứ diện AA’BD’ và phép đối xứng qua (ABD’) biến tứ diện AA’BD’ thành tứ diện ADBD’ nên ba tứ diện trên bằng nhau. - Làm tương tự đối với lăng trụ BCD.B’C’D’ ta ... ách giải bài 6a b/ Hỏi quan hệ giữa và ? - Từ hướng dẫn của GV rút ra cách tìm giao điểm của đường và mặt. Suy nghĩ, trả lời, suy ra hướng giải quyết bài tập 6b. Giải: a/Toạ độ giao điểm của đường thẳng d và mplà nghiệm của hệ phương trình: ĐS: M(0; 0; -2) b/ Ta có vtpt của mplà: .P/t mp: 4(x- 0)+ 3(y- 0)+ (z+ 2)= 0 4x + 3y + z +2 = 0. Bài tập 1: (Bài tập 7, trang 91, SGK Hình học12) Hoạt động của GV Hoạt động của HS Nội dung Gọi 2 h/sinh lên bảng giải bài tập 7a, 7b. -Theo dõi, nhận xét, đánh giá Vẽ hình, gợi mở để h/sinh phát hiện ra đ/thẳng Hai h/sinh lên bảng giải. Lớp theo dõi, nhận xét. Quan sát, theo dõi đễ phát hiện Theo dõi, suy nghĩ nhìn ra H và cách tìm H Giải: a/ Pt mpcó dạng: 6(x+1) – 2(y-2) – 3(z+3) = 0 Hay 6x -2y - 3z +1 = 0 b/ ĐS M(1; -1; 3). c/ Đường thẳng thoả mãn các yêu cầu của đề bài chính là đường thẳng đi qua A và M. Ta có . Vậy p/trình đường thẳng : Tiết 41 ÔN TẬP CHƯƠNG III (Tiết 2/2) I. MỤC TIÊU: 1)Về kiến thức: + Học sinh nắm vững hệ tọa độ trong không gian, tọa độ của véc tơ , của điểm, phép toán về véc tơ. + Viết được phương trình mặt cầu, phương trình đường thẳng và vị trí tương đối của chúng. + Tính được các khoảng cách: giữa hai điểm, từ một điểm đến mặt phẳng. 2) Về kiến thức: + Rèn luyện kỹ năng làm toán trên véc tơ. + Luyện viết phương trình mặt cầu, phương trình mặt phẳng, phương trình đường thẳng. + Phối hợp các kiến thức cơ bản, các kỹ năng cơ bản để giải các bài toán mang tính tổng hợp bằng phương pháp tọa độ. 3) Về tư duy và thái độ: + Rèn luyện tính chính xác, tư duy lôgíc. + Rèn khả năng quan sát sự liên hệ giữa song song và vuông góc. II. CHUẨN BỊ: - Giáo viên: Giáo án, phiếu học tập, bảng phụ. - Học sinh: giải bài tập ôn chương, các kiến thức cơ bản trong chương. III. PHƯƠNG PHÁP: Hỏi đáp , hoạt động nhóm. IV. TIẾN TRÌNH BÀI HỌC: 1/ Ổn định tổ chức: 2/ Kiểm tra bài cũ: 3/ Bài mới: Hoạt động 1: Bài tập 2: (Bài tập 9, trang 91, SGK Hình học 12) Hoạt động của GV Hoạt động của HS Nội dung Vẽ hình, hướng dẫn HS nhận ra hình chiếu H của M trên mpvà cách xác định H Theo dõi, suy nghĩ nhìn ra H và cách tìm H Giải: Gọi d là đường thẳng qua M và vuông góc với mp, pt đt (d) là: d cắt tại H. Toạ độ của H là nghiệm của hệ: Suy ra H(-3; 1; -2). Hoạt động 5 Hướng dẫn làm bài 10, 11, 12 Hoạt động của GV Hoạt động của HS Nội dung BT 11: -Treo bảng phụ 2 - Hướng dẫn, gợi ý HS phát hiện ra hướng giải bài tập 11 BT12 -Vẽ hình -Gợi mở, hướng dẫn HS tìm ra cách giải bt này. Phát phiếu HT2 - Nhìn bảng phụ - Theo dõi, suy nghĩ và tìm ra cách giải bài tập 11. Nhìn hình ,suy nghĩ và tìm ra cách giải. Giải: BT 11 cắt d g/điểm M(t; -4+t; 3-t) cắt d’ g/điểm N(1-2t’;-3+t’;4-5t’) Suy ra p/trình BT12 - Tìm hình chiếu H của A trên -A’ là điểm đối xứng của A qua Khi H là trung điểm AA/. Từ đó suy toạ độ A/. 3. Củng cố bài học: - GV hệ thống lại toàn bộ các kiến thức của chương III Phiếu HT 1: Cho ; . Chọn mệnh đề sai: A. B. C. Cos( D. Phiếu HT 2: 1/ Phương trình mặt cầu đường kính AB với A(4, -3, 7); B(2, 1, 3) là: A. (x+3)2 + (y-1)2 + (z+5)2 = 9 B. (x+3)2 + (y-1)2 + (z+5)2 = 35 C. (x- 3)2 + (y+1)2 + (z-5)2 = 9 D. (x- 3)2 + (y+1)2 + (z-5)2 = 35. 2/ Phương trình mặt phẳng qua A(1, 2, 3) và song song với mặt phẳng (P): x + 2y – 3z = 0 là: A. x + 2y – 3z – 4 = 0 B. x + 2y – 3z + 7 = 0 C. x + 2y – 3z + 4 = 0 D. x + 2y – 3z – 7 = 0 4. Dặn dò Hướng dẫn HS giải nhanh các bài tâp 7, 8 trang 91 SGK Hình học 12. V. Rút kinh nghiệm giờ giảng. Tiết 42 Ngày sọan: 12/4/2011 ÔN TẬP HỌC KỲ 2 I. Mục tiêu. 1. Kiến thức: Củng cố lại các kiến thức : - Khái niệm khối đa diện, khối đa diện lồi, khối đa diện đều và thể tích khối đa diện. - Phân chia và lắp ghép khối đa diện. - Các công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ, khối chóp. 2. Kỹ năng: Củng cố các kỹ năng: - Nhận biết được các hình đa diện và khối đa diện. - Chứng minh được hai hình đa diện bằng nhau. - Phân chia và lắp ghép các khối đa diện. Vận dụng công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ, khối chóp vào các bài toán tính thể tích. 3. Tư duy, thái độ: - Có tinh thần hợp tác, tích cực tham gia bài học, rèn luyện tư duy logic - Cẩn thận, chính xác trong tính toán, vẽ hình II. Chuẩn bị phương tiện dạy học. 1. Thực tiễn: HS đã nắm được các kiến thức về khối đa diện. 2. Phương tiện : SGK, sách bài tập, bút, thước kẻ và hệ thống ví dụ , bài tập. III. Gợi ý về phương pháp dạy học. Kết hợp linh hoạt các phương pháp vấn đáp, gợi mở, dạy học phát hiện và giải quyết vấn đề. IV. Tiến trình tổ chức bài học. 1. Ổn đinh tổ chức lớp. 2. Tiến trình tổ chức bài học. Hoạt động 1 Giải bài tập 5 trang 49 SGK Hình học 12 Hoạt động GV Hoạt động của HS Nội dung Nhận xét: Mặt phẳng (ABCD) có : - Cắt mặt cầu S(O, r) không ? giao tuyến là gì ? - Nhận xét MA.MB với MC.MD nhờ kết quả nào? - Nhận xét: Mặt phẳng (OAB) cắt mặt cầu S(O,r) theo giao tuyến là đường tròn nào? - Phương tích của M đối với (C1) bằng các kết quả nào ? Trả lời: cắt - Giao tuyến là đường tròn (C) qua 4 điểm A,B,C,D. - Bằng nhau: Theo kết quả phương tích. - Là đường tròn (C1) tâm O bán kính r có MAB là cát tuyến. - MA.MB hoặc MO2 – r2 a)Gọi (P) là mặt phẳng tạo bởi (AB,CD) => (P) cắt S(O, r) theo giao tuyến là đường tròn (C) qua 4 điểm A,B,C,D => MA.MB = MC.MD b)Gọi (C1) là giao tuyến của S(O,r) với mp(OAB) => C1 có tâm O bán kính r . Ta có MA.MB = MO2-r2 = d2 – r2 Hoạt động 2 Giải bài tập 6 trang 49 SGK Hình học 12 Hoạt động GV Hoạt động của HS Nội dung - Nhận xét: đường tròn giao tuyến của S(O,r) với mặt phẳng (AMI) có các tiếp tuyến nào? - Nhận xét về AM và AI Tương tự ta có kết quả nào ? - Nhận xét 2 tam giác MAB và IAB - Ta có kết quả gì ? AM và AI Trả lời: AM = AI BM = BI DMAB = DIAB (C-C-C) - Gọi (C) là đường tròn giao tuyến của mặt phẳng (AMI) và mặt cầu S(O,r). Vì AM và AI là 2 tiếp tuyến với (C) nên AM = AI. Tương tự: BM = BI Suy ra DABM = DABI (C-C-C) => Hoạt động 3 Giải bài tập 7 trang 49 SGK Hình học 12 Hoạt động GV Hoạt động của HS Nội dung Nhắc lại tính chất : Các đường chéo của hình hộp chữ nhật độ dài đường chéo của hình hộp chữ nhật có 3 kích thước a,b,c => Tâm của mặt cầu qua 8 đỉnh A,B,C,D,A’,B’,C’,D’ của hình hộp chữ nhật. Bán kính của mặt cầu này Trả lời: Đường chéo của hình hộp chữ nhật bằng nhau và cắt nhau tại trung điểm mỗi đường AC’ = Vẽ hình: B C I A D O B’ C’ A’ D’ Gọi O là giao điểm của các đường chéo hình hộp chữ nhật ABCD.A’B’C’D’. Ta có OA = OB = OC =OD=OA’=OB’=OC’=OD’ => O là tâm mặt cầu qua 8 dỉnh hình hộp chữ nhật ABCD.A’B’C’D’ và bán kính r = 3. Củng cố bài học: - Hướng dẫn HS là các bài tập 10: C M S O I B A Gọi I là trung điểm AB do DSAB vuông tại S => I là tâm đường tròn ngoại tiếp DSAB . Dựng (D) là đường thẳng qua I và D ^(SAB) => D là trục đường tròn ngoại tiếp DSAB. Trong (SC,D) dựng trung trực SC cắt (D) tại O => O là tâm mặt cầu ngoại tiếp hình chóp S.ABC. r2 = OA2 = OI2 + IA2 = => S = p(a2+b2+c2) V = 5.Dặn dò Hướng dẫn HS giải nhanh các bài tâp 7, 8 trang 91 SGK Hình học 12. Tiết 43 Ngày sọan: 22/4/2011 TRẢ BÀI KIỂM TRA CUỐI NĂM I. Mục tiêu. 1. Kiến thức: - Khảo sát hàm số - Sự tương giao - nguyên hàm, tích phân - Thể tích khối đa diện 2. Kỹ năng: Củng cố các kỹ năng, và các lỗi thường gặp: Nhận biết được các hình đa diện và khối đa diện. Chứng minh được hai hình đa diện bằng nhau3. Tư duy, thái độ: - Có tinh thần hợp tác, tích cực tham gia bài học, rèn luyện tư duy logic - Cẩn thận, chính xác trong tính toán, vẽ hình II. Chuẩn bị phương tiện dạy học. 1. Thực tiễn: HS đã nắm được các kiến thức trong chương I, đã làm bài kiểm tra 1 tiết. 2. Phương tiện : bài kiểm tra, SGK, sách bài tập, bút, thước kẻ và hệ thống các lỗi thường gặp trong bài kiểm tra, bài tập. III. Gợi ý về phương pháp dạy học. Kết hợp linh hoạt các phương pháp vấn đáp, gợi mở, dạy học phát hiện và giải quyết vấn đề. IV. NỘI DUNG Câu I: Cho hàm số 1. Khảo sát và vẽ 2. Viết phương trình tiếp tuyến của , biết tiếp tuyến đi qua điểm Câu II. Tính Câu III: Hình chóp tứ giác đều SABCD có khoảng cách từ A đến mặt phẳng bằng 2. Với giá trị nào của góc giữa mặt bên và mặt đáy của chóp thì thể tích của chóp nhỏ nhất? Câu IV: 1. Trong mặt phẳng Oxy cho các điểm và đường thẳng . Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2. Viết phương trình đường vuông góc chung của hai đường thẳng sau: HƯỚNG DẪN GIẢI Câu I: 1. a) TXĐ: b) Sự biến thiên của hàm số: -) Giới hạn, tiệm cận: +) là tiệm cận đứng. +) là tiệm cận ngang. -) Bảng biến thiên : c) Đồ thị : -) Đồ thị cắt Ox tại , cắt Oy tại , nhận là tâm đối xứng. 2. Phương trình đường thẳng đi qua là . (d) tiếp xúc (C) khi và chỉ khi hệ sau có nghiệm : Suy ra có 2 tiếp tuyến là : Câu II: Đặt Câu III: Gọi M, N là trung điểm BC, AD, gọi H là hình chiếu vuông góc từ N xuống SM. Ta có: Câu IV: 1. Giả sử 2. Gọi HẾT Tiết 44 Ngày sọan: 28/4/2011 ÔN TẬP THI TỐT NGHIỆP I. Mục tiêu. 1. Kiến thức: Củng cố lại các kiến thức : Khái niệm khối đa diện, khối đa diện lồi, khối đa diện đều và thể tích khối đa diện. Phân chia và lắp ghép khối đa diện. Các công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ, khối chóp. 2. Kỹ năng: Củng cố các kỹ năng: Nhận biết được các hình đa diện và khối đa diện. Chứng minh được hai hình đa diện bằng nhau. Phân chia và lắp ghép các khối đa diện. Vận dụng công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ, khối chóp vào các bài toán tính thể tích. 3. Tư duy, thái độ: - Có tinh thần hợp tác, tích cực tham gia bài học, rèn luyện tư duy logic - Cẩn thận, chính xác trong tính toán, vẽ hình II. Chuẩn bị phương tiện dạy học. 1. Thực tiễn: HS đã nắm được các kiến thức về khối đa diện. 2. Phương tiện : SGK, sách bài tập, bút, thước kẻ và hệ thống ví dụ , bài tập. III. Gợi ý về phương pháp dạy học. Kết hợp linh hoạt các phương pháp vấn đáp, gợi mở, dạy học phát hiện và giải quyết vấn đề. IV. Tiến trình tổ chức bài học. 1. Ổn đinh tổ chức lớp. 2. Bài mới: Các kiến thức cần ôn tâp: Công thức tính thể tích: Hệ thống bài tập: 1. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy , cạnh bên SB bằng a. Tính thể tích khối chóp S.ABCD theo a . 2. Cho hình chóp tứ giác đều S.ABCD có AB = a và SA = b . Tính thể tích khối chóp S.ABCD theo a và b. 3. Cho hình chóp tứ giác đều S.ABCD có AB = a và góc SAC bằng 450 . Tính thể tích khối chóp S.ABCD. 4. Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại đỉnh B, cạnh bên SA vuông góc với đáy. Biết SA = AB = BC = a. Tính thể tích khối chóp S.ABC theo a . 5. Cho hình chóp tứ giác đều S.ABCD có AB = a và góc giữa mặt bên và mặt đáy bằng 600 . Tính thể tích khối chóp S.ABCD. 6. Cho khối hộp chữ nhật ABCDA’B’C’D’ có thể tích V. Tính thể tích khối tứ diện C’ABC theo V. 7. Trên cạnh CD của tứ diện ABCD lấy điểm M sao cho CD = 3CM. Tính tỉ số thể tích của hai tứ diện ABMD và ABMC
Tài liệu đính kèm: