Giáo án Giải tích lớp 12 - Tiết 59 - Bài 2: Một số phương pháp tìm nguyên hàm ( 2 tiết)

Giáo án Giải tích lớp 12 - Tiết 59 - Bài 2:  Một số phương pháp tìm nguyên hàm ( 2 tiết)

I. Mục tiêu

 1.Về kiến thức:

 - Hiểu được phương pháp đổi biến số và lấy nguyên hàm từng phần .

 2. Về kĩ năng:

 - Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số không quá phức tạp.

 3. Về tư duy thái độ:

 - Phát triển tư duy linh hoạt.

-Học sinh tích cực tham gia vào bài học, có thái độ hợp tác.

II. Chuẩn bị của giáo viên và học sinh

1. Giáo viên:

- Lập các phiếu học tập, bảng phụ.

 

doc 4 trang Người đăng haha99 Lượt xem 793Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Giải tích lớp 12 - Tiết 59 - Bài 2: Một số phương pháp tìm nguyên hàm ( 2 tiết)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tr­êng THPT T©n Yªn 2
Tæ To¸n
	TiÕt theo ph©n phèi ch­¬ng tr×nh : 59.
	Ch­¬ng 3: Nguyên hàm tích phân và ứng dụng
	§2: Mét Sè PP T×m Nguyªn Hµm( 2tiÕt) 
Ngµy so¹n: 15/01/2010
TiÕt 2
Mục tiêu
 1.Về kiến thức:
 - Hiểu được phương pháp đổi biến số và lấy nguyên hàm từng phần . 
	2. Về kĩ năng:
 - Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số không quá phức tạp.
 3. Về tư duy thái độ:
 - Phát triển tư duy linh hoạt.
-Học sinh tích cực tham gia vào bài học, có thái độ hợp tác.
Chuẩn bị của giáo viên và học sinh
1. Giáo viên: 
Lập các phiếu học tập, bảng phụ.
 2. Học sinh:
 Các kiến thức về : 
 - Vận dụng bảng các nguyên hàm, tính chất cơ bản của nguyên hàm, vi phân.
 III. Phương pháp: Gợi mở vấn đáp 
Tiến trình bài học 
TIẾT 2
Hoạt động 1:Giới thiệu phương pháp lấy nguyên hàm từng phần .
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
5’
8’
Đ: 
(u.v)’= u’.v + u.v’
= +
 = +
 = uv - 
Đ:Đặt u = x, dv = sinxdx
 Khi đó du = dx, v = -cosx
Ta có : 
 =- x.cosx + = - xcosx + sinx + C
H: Hãy nhắc lại công thức đạo hàm một tích ?
Hãy lấy nguyên hàm hai vế, suy ra = ?
- GV phát biểu định lí 3
- Lưu ý cho HS: đặt u, dv sao cho 
tính dễ hơn .
- H: Từ đlí 3 hãy cho biết đặt u và dv như thế nào? Từ đó dẫn đến kq?
- yêu cầu một HS khác giải bằng cách đặt u = sinx, dv = xdx thử kq như thế nào
-Định lí 3: (sgk)
 = uv - 
-Vd1: Tìm 
Bg:
Đặt u = x,dv = sinxdx Khi đó du =dx,v =-cosx
Ta có : 
 =- x.cosx + = - xcosx + sinx + C
Hoạt động 2: Rèn luyện kỹ năng tìm nguyên hàm bằng pp lấy nguyên hàm từng phần.
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
5’
5’
5’
2’
7’
- Học sinh suy nghĩ và tìm ra hướng giải quyết vấn đề.
Đ :Đặt u = x ,dv = exdx
 du = dx, v = ex
 Suy ra :
= x. ex - 
 = x.ex – ex + C
Đ: Đặt u = x2, dv = exdx
 du = 2xdx, v = ex
Khi đó: 
=x2.ex-
 = x2.ex-x.ex- ex+C
- Đ: Đặt u = lnx, dv= dx
 du = dx, v = x
Khi đó : 
= xlnx - 
 = xlnx – x + C
- Đăt u = lnx, dv = x2dx
 du = dx , v = 
Đ :Không được.
Trước hết : 
Đặt t = dt = dx
Suy ra =2
Đặt u = t, dv = sint dt
du = dt, v = - cost
=-t.cost+ = -t.cost + sint + C
Suy ra:
= 
= -2.cos+2sin+C
H :- Dựa vào định lí 3, hãy đặt u, dv như thế nào ? Suy ra kết quả ?
H : Hãy cho biết đặt u, dv như thế nào ? Suy ra kquả ?
- Lưu ý :Có thể dùng từng phần nhiều lần để tìm nguyên hàm.
- H : Cho biết đặt u và dv như thế nào ?
- Thông qua vd3, GV yêu cầu HS cho biết đối với 
thì ta đặt u, dv như thế nào.
H : Có thể sử dụng ngay pp từng phần được không ? ta phải làm như thế nào ?
+ Gợi ý : dùng pp đổi biến số trước, đặt t = .
* Lưu ý cho HS các dạng thường sử dụng pp từng phần.
, 
đặt u = f(x), dv cònlại.
, đặt u = lnx,dv =f(x) dx
- Vd2 :Tìm 
Bg :
Đặt u = x ,dv = exdx
 du = dx, v = ex
 Suy ra :
= x. ex - 
 = x.ex – ex + C
Vd3 : Tìm I=
Bg :Đặt u = x2, dv = exdx
 du = 2xdx, v = ex
Khi đó: 
=x2.ex-
 = x2.ex-x.ex- ex+C
Vd4 :Tìm 
Bg :
Đặt u = lnx, dv= dx
 du = dx, v = x
Khi đó : 
= xlnx - 
 = xlnx – x + C
Vd5: Tìm 
Đặt t = dt = dx
Suy ra =2
Đặt u = t, dv = sint dt
du = dt, v = - cost
=-t.cost+ = -t.cost + sint + C
Suy ra:
= 
= -2.cos+2sin+C
 * Hoạt động 3 : Củng cố
(Giáo viên dùng bảng phụ, cả lớp cùng chú ý phát hiện)
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
8’
- Cả lớp tập trung giải quyết .
- Theo dõi phần trình bày của bạn và rút ra nhận xét và bổ sung.
- Treo bảng phụ và yêu cầu cả lớp chú ý giải quyết .
- Gọi 2 HS trình bày ý kiến của mình.
- GV nhận xét và kết luận.
V. Bài tập về nhà:7, 8, 9 trang 145 và 146
VI. Phụ lục :	
Dựa vào bảng sau đây, hãy cho biết gợi ý phương pháp giải nào không hợp lý. 
 ( Đối với )
Hàm số
Gợi ý phương pháp giải
f(x) = (2x+1)cosx
Đặt u = 2x+1 , dv =cosx
f(x) = xe-x
Đặt u = e-x , dv = xdx
f(x) = lnx
Đặt u = lnx, dv =
f(x) = ex sinx
Đặt u = ex ,dv = sinxdx hoặc u = sinx,dv = exdx

Tài liệu đính kèm:

  • docDAI SO T59.doc