Kiến thức : Học sinh cần :
- Nắm vững cách giải các phương trình mũ và logarít cơ bản.
- Hiểu rõ các phương pháp thường dùng để giải phương trình mũ và phương trình logarít.
+ Kĩ năng : Giúp học sinh :
- Vận dụng thành thạo các phương pháp giải PT mũ và PT logarít vào bài tập.
- Biết sử dụng các phép biến đổi đơn giản về luỹ thừa và logarít vào giải PT.
+ Tư duy : - Phát triển óc phân tích và tư duy logíc.
- Rèn đức tính chịu khó suy nghĩ, tìm tòi.
Trêng THPT T©n Yªn 2 Tæ To¸n TiÕt theo ph©n phèi ch¬ng tr×nh : 47. Ch¬ng 2: Hµm sè luü thõa, Hµm Sè mò, Hµm sè l«garit §7: Phương trình mũ và lôgarit( 2tiÕt) Ngµy so¹n: 15/12/2009 TiÕt 1 I. Mục tiêu : + Kiến thức : Học sinh cần : - Nắm vững cách giải các phương trình mũ và logarít cơ bản. - Hiểu rõ các phương pháp thường dùng để giải phương trình mũ và phương trình logarít. + Kĩ năng : Giúp học sinh : - Vận dụng thành thạo các phương pháp giải PT mũ và PT logarít vào bài tập. - Biết sử dụng các phép biến đổi đơn giản về luỹ thừa và logarít vào giải PT. + Tư duy : - Phát triển óc phân tích và tư duy logíc. - Rèn đức tính chịu khó suy nghĩ, tìm tòi. II. Chuẩn bị của giáo viên và học sinh : + Giáo viên : - Bảng phụ ghi đề các bài tập. - Lời giải và kết quả các bài tập giao cho HS tính toán. + Học sinh : - Ôn các công thức biến đổi về mũ và logarít. Các tính chất của hàm mũ và hàm logarít. III. Phương pháp : Phát vấn gợi mở kết hợp giải thích. IV. Tiến trình bài dạy : 1)Ổn định tổ chức : 2)KT bài cũ : (5’) - CH1 : Điều kiện của cơ số và tập xác định của ax và logax. - CH2 : Nhắc lại các dạng đồ thị của 2 hàm y=ax , y=logax. 3) Bài mới : HĐ 1 : Hình thành khái niệm PT mũ cơ bản. TG HĐ của giáo viên HĐ của học sinh Ghi bảng 10’ H1:Với 0<a1, điều kiện của m để PT ax có nghiệm ? H2: Với m>0,nghiệm của PT ax=m ? H3: Giải PT 2x=16 ex=5 -Do ax>0 R, ax=m có nghiệm nếu m>0. -Giải thích về giao điểm của đồ thị y=ax và y=m để số nghiệm. -Đọc thí dụ 1/119 I/ PT cơ bản : 1)PT mũ cơ bản : m>0,ax=mx=logam Thí dụ 1/119 HĐ 2 : Hình thành khái niệm PT logarít cơ bản TG HĐ của giáo viên HĐ của học sinh Ghi bảng 10’ H4: Điều kiện và số nghiệm của PT logax=m ? H5: Giải PT log2x=1/2 lnx= -1 log3x=log3P (P>0) -Giải thích bằng giao điểm của đồ thị y=logax và y=m. -Nghiệm duy nhất x=am -Đọc thí dụ 2/119 2)PT logarit cơ bản : mR,logax=m x=am Thí dụ 2/119 HĐ 3 : Tiếp cận phương pháp giải đưa về cùng cơ số. TG HĐ của giáo viên HĐ của học sinh Ghi bảng 10’ H6: Các đẳng thức sau tương đương với đẳng thức nào ? aM=aN ? logaP=logaQ ? Từ đó ta có thể giải PT mũ, PT logarit bằng phương pháp đưa về cùng cơ số. TD1: Giải 9x+1=272x+1 TD2: Giải log2=log1/2(x2-x-1) -HS trả lời theo yêu cầu. -PT 32(x+1)=33(2x+1) 2(x+1)=3(2x+1), .... x>0 -PT x2-x-1>0 log1/2x=log1/2(x2-x-1) x=x2-x-1, .... II/ Một số phương pháp giải PT mũ và PT logarit: 1)PP đưa về cùng cơ số: aM=aN M=N logaP=logaQ P=Q ( P>0, Q>0 ) Củng cố : 9’ Phân công các nhóm giải các PT cho trên bảng phụ : (2+)2x = 2- 0,125.2x+3 = Log27(x-2) = log9(2x+1) Log2(x+5) = - 3 Bài tập nhà : 1’ - Bài 63, 64/ 123, 124 - Thực hiện H3/121 và đọc thí dụ 5/121.
Tài liệu đính kèm: