Giáo án Giải tích lớp 12 - Tiết 47 - Bài 7: Phương trình mũ và lôgarit ( 2 tiết)

Giáo án Giải tích lớp 12 - Tiết 47 - Bài 7:  Phương trình mũ và lôgarit ( 2 tiết)

Kiến thức : Học sinh cần :

- Nắm vững cách giải các phương trình mũ và logarít cơ bản.

- Hiểu rõ các phương pháp thường dùng để giải phương trình mũ và phương trình logarít.

+ Kĩ năng : Giúp học sinh :

- Vận dụng thành thạo các phương pháp giải PT mũ và PT logarít vào bài tập.

- Biết sử dụng các phép biến đổi đơn giản về luỹ thừa và logarít vào giải PT.

+ Tư duy : - Phát triển óc phân tích và tư duy logíc.

- Rèn đức tính chịu khó suy nghĩ, tìm tòi.

 

doc 2 trang Người đăng haha99 Lượt xem 969Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Giải tích lớp 12 - Tiết 47 - Bài 7: Phương trình mũ và lôgarit ( 2 tiết)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tr­êng THPT T©n Yªn 2
Tæ To¸n
	TiÕt theo ph©n phèi ch­¬ng tr×nh : 47.
	Ch­¬ng 2: Hµm sè luü thõa, Hµm Sè mò, Hµm sè l«garit
	§7: Phương trình mũ và lôgarit( 2tiÕt) 
Ngµy so¹n: 15/12/2009
TiÕt 1
I. Mục tiêu : 
+ Kiến thức : Học sinh cần :
- Nắm vững cách giải các phương trình mũ và logarít cơ bản.
- Hiểu rõ các phương pháp thường dùng để giải phương trình mũ và phương trình logarít.
+ Kĩ năng : Giúp học sinh :
- Vận dụng thành thạo các phương pháp giải PT mũ và PT logarít vào bài tập.
- Biết sử dụng các phép biến đổi đơn giản về luỹ thừa và logarít vào giải PT.
+ Tư duy : - Phát triển óc phân tích và tư duy logíc.
- Rèn đức tính chịu khó suy nghĩ, tìm tòi.
II. Chuẩn bị của giáo viên và học sinh :
+ Giáo viên : - Bảng phụ ghi đề các bài tập.
- Lời giải và kết quả các bài tập giao cho HS tính toán.
+ Học sinh : - Ôn các công thức biến đổi về mũ và logarít.
Các tính chất của hàm mũ và hàm logarít.
III. Phương pháp : Phát vấn gợi mở kết hợp giải thích.
IV. Tiến trình bài dạy :
1)Ổn định tổ chức :
2)KT bài cũ : (5’)
- CH1 : Điều kiện của cơ số và tập xác định của ax và logax.
- CH2 : Nhắc lại các dạng đồ thị của 2 hàm y=ax , y=logax.
	3) Bài mới :
HĐ 1 : Hình thành khái niệm PT mũ cơ bản.
TG
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
10’
H1:Với 0<a1, điều kiện của m để PT ax có nghiệm ?
H2: Với m>0,nghiệm của PT ax=m ?
H3: Giải PT 2x=16
 ex=5
-Do ax>0 R, ax=m có nghiệm nếu m>0.
-Giải thích về giao điểm của đồ thị y=ax và y=m để số nghiệm.
-Đọc thí dụ 1/119
I/ PT cơ bản :
1)PT mũ cơ bản :
m>0,ax=mx=logam
Thí dụ 1/119
HĐ 2 : Hình thành khái niệm PT logarít cơ bản
TG
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
10’
H4: Điều kiện và số nghiệm của PT logax=m ?
H5: Giải PT log2x=1/2
 lnx= -1
 log3x=log3P (P>0)
-Giải thích bằng giao điểm của đồ thị y=logax và y=m.
-Nghiệm duy nhất x=am
-Đọc thí dụ 2/119
2)PT logarit cơ bản :
mR,logax=m x=am
Thí dụ 2/119
HĐ 3 : Tiếp cận phương pháp giải đưa về cùng cơ số.
TG
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
10’
H6: Các đẳng thức sau tương đương với đẳng thức nào ?
 aM=aN ?
 logaP=logaQ ?
Từ đó ta có thể giải PT mũ, PT logarit bằng phương pháp đưa về cùng cơ số.
TD1: Giải 9x+1=272x+1
TD2: Giải log2=log1/2(x2-x-1)
-HS trả lời theo yêu cầu.
-PT 32(x+1)=33(2x+1)
 2(x+1)=3(2x+1), ....
 x>0
 -PT x2-x-1>0
 log1/2x=log1/2(x2-x-1)
 x=x2-x-1, ....
II/ Một số phương pháp giải PT mũ và PT logarit:
1)PP đưa về cùng cơ số:
aM=aN M=N
logaP=logaQ P=Q
 ( P>0, Q>0 )
Củng cố : 9’
Phân công các nhóm giải các PT cho trên bảng phụ :
(2+)2x = 2-
0,125.2x+3 = 
Log27(x-2) = log9(2x+1)
Log2(x+5) = - 3
Bài tập nhà : 1’
 - Bài 63, 64/ 123, 124
 - Thực hiện H3/121 và đọc thí dụ 5/121.

Tài liệu đính kèm:

  • docDAI SO T47.doc