1. Về kiến thức:
Củng cố lại những kiến thức
- Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Phương pháp tìm đường tiệm cận của đồ thị hàm số.
- Phương pháp tìm GTLN, GTNN của hàm số
- Các quy tắc tìm cực trị của hàm số.
2. Về kỹ năng: Củng cố lại các kỹ năng
Thành thạo trong việc xét chiều biến thiên, tìm cực trị của hàm số, tìm GTLN, GTNN của hàm số trên 1 tập hợp số thực cho trước, viết phương trình các đường tiệm cận của đồ thị; khảo sát sự biến thiên và vẽ đồ thị của một số hàm số đơn giản.
Trêng THPT T©n Yªn 2 Tæ To¸n TiÕt theo ph©n phèi ch¬ng tr×nh : 24. Ch¬ng 1: øng Dông §¹o Hµm §Ó Kh¶o S¸t vµ VÏ §å ThÞ Hµm Sè Kiểm Tra Ch¬ng I ( 1tiÕt) Ngµy so¹n: 15/9/2009 TiÕt 1 I. Mục tiêu: 1. Về kiến thức: Củng cố lại những kiến thức - Khảo sát sự biến thiên và vẽ đồ thị của hàm số - Phương pháp tìm đường tiệm cận của đồ thị hàm số. - Phương pháp tìm GTLN, GTNN của hàm số - Các quy tắc tìm cực trị của hàm số. 2. Về kỹ năng: Củng cố lại các kỹ năng Thành thạo trong việc xét chiều biến thiên, tìm cực trị của hàm số, tìm GTLN, GTNN của hàm số trên 1 tập hợp số thực cho trước, viết phương trình các đường tiệm cận của đồ thị; khảo sát sự biến thiên và vẽ đồ thị của một số hàm số đơn giản. 3. Về tư duy – thái độ: Rèn luyện tư duy logic, thái độ cẩn thận, tính chính xác. ĐỀ: I Bài 1: (4đ)Cho hàm số có đồ thị (C ) a)Khảo sát sự biến thiên và vẽ đồ thị (C ). b)Dùng đồ thị (C ) biện luận theo m số nghiệm của phương trình : (*) Bài 2: (2đ) Tìm các điểm cực trị của đồ thị hàm số sau y = cos2x + trên [0; ] Bài 3: (2đ) Tìm giá trị lớn nhất – giá trị nhỏ nhất (nếu có) của hàm số: y = trên [0; 1] Bài 4: (2đ) Chứng minh rằng: 3sinx + 3tanx > 5x; "x Î (0; ) ĐỀ: II I> PHẦN TRẮC NGHIỆM: 1) Cho hàm số: f(x) = -2x3 + 3x2 + 12x - 5 Trong các mệnh đề sau, tìm mệnh đề đúng. A. f(x) tăng trên khoảng (-3 ; 1) B. f(x) tăng trên khoảng (-1 ; 1) C. f(x) tăng trên khoảng (5 ; 10) D. f(x) giảm trên khoảng (-1 ; 3) 2) Số điểm cực trị của hàm số: f(x) = -x4 + 2x2 – 3 là: A. 0 B. 1 C. 2 D. 3 3) Giá trị lớn nhất của hàm số f(x) = x3 + 2x2 – 7x + 1 trên đoạn [0 ; 2] là: A. -1 B. 1 C. 3 D. 4 4) Hàm số y = đồng biến trên : A. R B. ( 1 ; + ¥) C. (-¥ ; 1) D. R \{1} 5) Giá trị của m để hàm số: y = - (m + 1)x2 + 4x + 5 đồng biến trên R là: A. -3 B. -3 < m < 1 C. -2 D. -2 < m < 2 6) Số đường tiệm cận của đồ thị hàm số: y = là: A. 1 B. 2 C. 3 D. 0 7) Hàm số y = -x3 + 3x2 – 3x + 1 nghịch biến trên: A. R B. (-¥ ; 1), (1; +¥) C. (-¥ ; 1) D. (1; +¥) 8) Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng (-¥ ;1), (1;+¥): A. y = x2 – 3x + 2 B. y = x3 - x2 + 2x + 1 C. y = D. y = 9) Phương trình tiệm cận của đồ thị hàm số: y = là: A. y = 1 và x = 1 B. y = 1 và x = -2 C. y = -2 và x = 1 D. y = 2 và x = 1 10) Các giá trị của m để hàm số: y = có hai tiệm cận là: A. m và m B. m C. m 1 D. m = 2 hoặc m = -2 II> PHẦN TỰ LUẬN: 1) Khảo sát và vẽ đồ thị hàm số: y = 2) Định m để hàm số: y = x3 – 3mx2 + m có hai điểm cực trị tại B và C, sao cho 3 điểm A, B, C thẳng hàng. Biết điểm A(-1; 3) 3) Tìm GTLN – GTNN của hàm số y = (x – 6) trên đoạn [0 ; 3]. LỜI GIẢI VÀ THANG ĐIỂM: ĐỀ: I Bài 1: a) (2,5đ) + TXĐ : D = R\{0} 0,25đ +Sự biến thiên : . 0,25đ .Tìm được tiệm cận đứng : x = 0 0,25đ .Tìm được tiệm cận xiên : y = x - 3 0,25đ .Tính được y’ , y’ = 0 x = 1 , x = -1 0,25đ .Lập đúng bảng biến thiên 0,5đ + Đồ thị : .Điểm đặc biệt 0,25đ .Đồ thị 0,5đ b) (1,5đ) . x = 0 không phải là nghiệm của pt (*) 0,25đ .Đưa được pt (*) về dạng : 0,25đ .Số nghiệm của pt (*) chính là số giao điểm của đò thị (C ) và đường thẳng y = m song song với trục Ox 0,25đ .Căn cứ vào đồ thị, ta có : m > -1 hoặc m < -5 : pt có 2 nghiệm 0,25đ m = 1 hoặc m = -5 : pt có 1 nghiệm 0,25đ -5 < m < -1 : pt vô nghiệm 0,25đ Bài 2: y' = -2sinxcosx + cosx (0,5đ) y’ = 0 ó - cosx (2sinx - ) = 0 (0,25đ) ó (0,25) y’’ = -2cos2x - sinx (0,5đ) y’’ () = -2cos - = 1 - . < 0 (0,25đ) Vậy: xCĐ = ; yCĐ = - Điểm CĐ của đồ thị HS: (; -) (0,25đ) Bài 3: Xét trên [0;1] (0,25đ) Đặt g(x) = -x2 + x + 6 với x Î[0;1] g'(x) = -2x +1 g’(x) = 0 ó x = (0,25đ) g () = ; g(0) = 6; g(1) = 6 (0,5đ) => 6 £ g(x) £ (0,25đ) ó (0,25đ) Hay (0,25đ) Vậy miny = ; maxy = (0,25đ) [0;1] [0;1] Bài 4: Đặt f(x) = 3sinx + 3tanx – 5x Ta có: f(x) liên tục trên nửa khoảng [0;) (0,25đ) f’(x) = 3(cosx + ) – 5 > 3(cos2x + ) – 5 (0,5đ) vì cosx Î(0;1) Mà cos2x + >2, "x Î (0; ) (0,25đ) => f’(x) > 0, "x Î (0; ) (0,25đ) => HS đồng biến trên [0;) (0,25đ) => f(x) > f(0) = 0, "x Î (0; ) (0,25đ) vậy 3sinx + 3 tanx > 5x, "x Î (0; ) (0,25đ) ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ: II I/ Đáp án trắc nghiệm: Câu 1 2 3 4 5 6 7 8 9 10 Chọn B D C D A B A C A A II/ Đáp án tự luận: Đáp án Điểm Câu 1: (2điểm) + D = R \ {-} + y’ = + + + x = - là tiệm cận đứng y = là tiệm cận ngang Bảng biến thiên: x - ¥ - +¥ y’ + + y +¥ - ¥ Đồ thị: x = 0 => y = -2 y = 0 => x = 2 Câu 2: (2điểm) + D = R + y’ = 3x (x – 2m) y' = 0 x1 = 0 , x2 =2m Để y có 2 điểm cực trị khi m 0. Giả sử B(0; m) C(2m; m-4m3) Ta có: = ( 1, m – 3) = (2m + 1; m – 4m3 -3) YCBT m(4m2 + 2m – 6) = 0 ĐS: Câu 3: (2điểm) y = (x – 6) y’ = y’ = y’ = 0 Tính: f(1) = -5 f(2) = -8 f(0) = -12 f(3) = -3 ĐS: 0.5 0.5 0.5 0.5 0.5 0.7 0.5 0.25 0.5 0.5 0.5 0.5
Tài liệu đính kèm: