Bài 5 HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
Tiết 38-39-40
I. Mục tiêu
- Về kiến thức:
Giúp học sinh
: + Hiểu và ghi nhớ được các tính chất và đồ thị của hàm số mũ, hàm số lôgarit
+ Hiểu và ghi nhớ các công thức tính đạo hàm của hàm số mũ, hàm số lôgarit
- Về kĩ năng:
+Biết vận dụng các công thức để tính đạo hàm của hàm số mũ, hàm số lôgarit
+ Biết lập bảng biến thiên và vẽ được đồ thị của hàm số mũ, hàm số lôgarit với cơ số biết trước
+ Biết được cơ số của một hàm số mũ, hàm số lôgarit là lớn hơn hay nhỏ hơn 1 khi biết sự biến thiên hoặc đồ thị của nó.
Bài 5 HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT Tiết 38-39-40 I. Mục tiêu - Về kiến thức: Giúp học sinh : + Hiểu và ghi nhớ được các tính chất và đồ thị của hàm số mũ, hàm số lôgarit + Hiểu và ghi nhớ các công thức tính đạo hàm của hàm số mũ, hàm số lôgarit Về kĩ năng: +Biết vận dụng các công thức để tính đạo hàm của hàm số mũ, hàm số lôgarit + Biết lập bảng biến thiên và vẽ được đồ thị của hàm số mũ, hàm số lôgarit với cơ số biết trước + Biết được cơ số của một hàm số mũ, hàm số lôgarit là lớn hơn hay nhỏ hơn 1 khi biết sự biến thiên hoặc đồ thị của nó. II.Chuẩn bị của giáo viên –học sinh Gv : Giáo án, các dung cụ vẽ hình. Hs : Đọc bài trước ở nhà, chuẩn bị các kiến thức liên quan dến đạo hàm III. Phương pháp: Gợi mở vấn đáp, thuyết giảng, đan xen hoạt động nhóm chủ đạo là gợi mở vấn đáp IV. Tiến trình bài học 1. ổn định tổ chức 2. Kiểm tra bài cũ 3. Bài mới TIẾT 1 Hoạt động 1: Tìm hiểu định nghĩa hàm số mũ, lôgarit Tg Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho hs tính x -2 0 1 2 2x x -8 0 1 4 log2x Hãy nhận xét sự tương ứng giữa mỗi giá trị của x và giá trị 2x (log2x)? Từ đó dẫn dắt đến định nghĩa hàm số mũ, hàm số lôgarit Tìm tập xác định hàm số y = ax ? Tương tự tìm tập xác định của hs y = log2x? Gv nêu chú ý Hsth sự tương ứng là 1:1 hs chú ý D = R D= R*+ HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT Ta luôn giả thiết o<a1 1. Khái niệm hàm số mũ và lôgarit. Định nghĩa (sgk) Có thể viết log10x = logx = lgx ex = exp(x) HOẠT ĐỘNG 2: Giới thiệu một số giới hạn liên quan đến hs mũ hàm số mũ, hàm số lôgarit Tg Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Hoạt động thành phần 1: Giới thiệu tính liên tục của hs mũ, lôgarit Nhắc lại định nghĩa hàm số liên tục tại một điểm? Ta thừa nhận hàm số mũ, hàm số lôgarit liên tục trên tập xác định của nó. Tức là có ax = logax = Điền vào trên? Hoạt động thành phần 2: Củng cố tính liên tục của hàm số mũ, lôgarit Cho hs thảo luận nhóm thực hiện các câu a,b,c sau đó các nhóm cử đại diện trình bày. Cho các hs khác nhận xét Gv có thể hướng dẫn và sửa sai hoàn chỉnh bài tập Hoạt động thành phần 3: Hình thành định lí 1 Đã biết (1+)t = e (1+)t = e , tính ? Cho hs thảo luận để tìm ghạn trên Giáo viên nêu định lí 1 Hướng dẫn chứng minh (2) Bđổi = ? Áp dụng (1)®(2) Hướng dẫn chứng minh (3) Đặt t = ex -1 Hs trả lời Hs thực hiện sự tương ứng là 1:1 hs chú ý D = R D= R*+ học sinh trình bày bài làm Đặt , được = e = ln = 1 Hs trình bày 2. Một số giới hạn liên quan đến hàm số mũ, hàm số lôgarit a) Hàm số mũ, hàm số lôgarit liên tục trên tập xác định của nó. Tức là có x0 : ax = x0 : logax = a) = 0 b) log2x = log28 = 3 c) ®1 khi x®0 log = 0 b) Ta có: = e (1) Định lí 1 *)= 1 (2) *) = 1 (3) TIẾT 2 HOẠT ĐỘNG 3:Tính đạo hàm của hs mũ, lôgarit Tg Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Hoạt động thành phần 1: Tiếp cận đlí 2 Hãy nêu cách tính đạo hàm của một hàm số, áp dụng tính đạo hàm của hs y = ex . Cho hs thảo luận nhóm, sau đó các nhóm cử đại diện trình bày Điền vào chỗ trống ax = e Từ đó tính (ax)’ ( áp dụng cthức tính đạo hàm của hs hợp) T/tự tính (au(x))’ ,(eu(x))’ ? cho học sinh phát biểu lại các kết quả vừa tìm được cho học sinh lên bảng t/h ví dụ 1 Hoạt động thành phần 2 : củng cố định lí 2 Cho hs thảo luận nhóm thực hiện ví dụ 1,các câu a,b sau đó các nhóm cử đại diện trình bày. Cho các hs khác nhận xét Gv có thể hướng dẫn và sửa sai hoàn chỉnh bài tập Hoạt động thành phần 3:Tiếp cận đlí3 Tính (lnx)’ ? Cho hs thảo luận nhóm, sau đó các nhóm cử đại diện trình bày Hd = = ®kq? Hãy đổi sang cơ số e: Logax = ? () Tính (logax)’ Từ kq trên tính (lnu(x))’ , (logau(x))’ ? cho học sinh phát biểu lại các kết quả vừa tìm được Hoạt động thành phần 4:củng cố định lí 3 Cho học sinh thảo luận thực hịên ví dụ 2 Cho học sinh thảo luận chứng minh [ln(-x)]’ = (x<0) Áp dụng (lnu(x))’ = Từ kq trên và định lí 3 rút ra được điều gì? Cho x số gia . = ex+-ex = ex(e-1) . = . = ex = ex ® (ex)’ = ex (ax )’= ()’ = (exlna)’ = lna.ax y’ = [(x2+1)ex]’ = y’ = [(x2+1)ex]’ = Học sinh trình bày bài làm Cho x số gia . = ln(x+) – lnx = = = = (lnu(x))’ = Đặt –x = u(x) được (lnu(x))’ = = = ® [ln(-x)]’ = Định lí 2 (sgk) VD1 [(x2+1)ex]’ =(x+1)2 ex a) [(x+1)e2x]’ = (x+1)’e2x + (x+1)(e2x)’ = e2x + 2(x+1)(e2x) = (2x+3)(e2x) b) []’ = b) Đạo hàm của hàm số lôgarit Cho x số gia . = ln(x+) – lnx = = ® (lnx)’ = (logax)’ = ()’ == (lnu(x))’ = Định lí 3(sgk) Hệ quả TIẾT 3 HOẠT ĐỘNG 4 : khảo sát sự biến thiên và vẽ đồ thị của hs mũ .Hàm số lôgarit Tg Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Hoạt động thành phần1: sự biến thiên và vẽ đồ thị của hs Nêu các bước khảo sát sự biến thiên của một hàm số ? Hãy xét dấu của y’ ? Nhận xét dấu của ax Căn cứ vào đâu dể biết dấu của y’ ? Khi nào lna >0, lna <0? ® xét sự biến thiên của hs dựa vào hai trường hợp của hệ số a *Trường hợp a>1 xét tính đơn diệu của hàm số để vẽ BBT của hs ta cần biết những yếu tố nào? Nêu các kết qủa giới ghạn tại vô cực của hs Từ giơí hạn y = 0 có nhận xét gì về tiệm cận của hàm số? Yêu cầu một học sinh lên bảng lập BBT Dựa vào bbt cho biết tập giá trị của hàm số Cho học sinh quan sát đồ thị H2.1 Và cho học sinh nhận xét về các dặc điểm của đồ thị hàm số y = ax *T/h 0<a<1 Cho học sinh thực hiện hđ 4 sgk Để học sinh biết cách đọc đthị (có liên hệ giữa tính chất và đồ thị của hàm số) Tổng kết và cho học sinh ghi nhớ Hoạt động thành phần 2 : sự biến thiên và vẽ đồ thị của hs lôgarit Tương tự như hs y = ax gv cho hsinh khảo sát hs y= logax Xét dấu của y’ y’ = axlna Nhận xét ax > 0, Căn cứ vào dấu của lna Hàm số đồng biến Hàm số có tiệm cận ngang y = 0 Một hs lập BBT T = [0 ; +) Quan sát và nhận xét Thực hiện hđ4 Hình thành những kĩ năng quan hệ giữa đthị và tính chất của hàm số ghi nhớ thực hiện các yêu cầu của gv và ghi nhận kiến thức hs thực hiện 4. Sự biến thiên và đồ thị của hàm số mũ và hàm số lôgarit a) Hàm số mũ y = ax ghi nhớ (sgk) BBT của hàm số trong hai trường hợp a> 1và 0<a<1 b)hàm số y= logax BBT của hàm số trong hai trường hợp a >1 và 0<a<1 Phiếu học tập số 1 Tính giới hạn của hàm số: a/ b/ Tg Hoạt động của GV Hoạt động của HS Ghi bảng 10’ GV phát phiếu học tập số 1 -Chia nhóm thảo luận -Đề nghị đại diện nhóm thực hiện bài giải - GV: đánh giá kết quả bài giải, cộng điểm cho nhóm (nếu đạt) - Sửa sai, ghi bảng HS nhận phiếu: -Tập trung thảo luận. -Cử đại diện nhóm lên giải, a. b. Hoạt động 3: Phiếu học tập số 2 : Tìm đạo hàm của các hàm số a/ b/ y = (3x – 2) ln2x c/ Tg Hoạt động của GV Hoạt động của HS Ghi bảng 10/ GV phát phiếu học tập số 2,yêu cầu hsinh nêu lại các công thức tìm đạo hàm -yêu cầu hsinh lên trình bày bài giải GV kiểm tra lại và sửa sai - Đánh giá bài giải, cho điểm Hsinh thảo luận nhóm ,nêu phát biểu : a/ y’=(2x-1)e2x b/ c/ Họat động 4: Phiếu học tập số 3 Hàm số` nào dưới đây đồng biến, nghịch biến a/ , b/ , c/ , d/ Tg Hoạt động của GV Hoạt động củaHS Ghi bảng 6’ GVphát phiếu học tập số 3 Hs:ghi nội dung phiếu học tập,thảo luận và cử đại diện trình bày: - đồng biến: a/ và d/ nghịch biến: b/ và c/ Họat động: Phiếu học tập số 4(vẽ đồ thị) Vẽ đồ thị hàm số: a/ b/ Tg Hoạt động của GV Hoạt động củaHS Ghi bảng 10’ GV:phát phiếu học tập số 4 -Cho hsinh quan sát bảng phụ để so sánh kết quả Hs ghi câu hỏi vào vở bài tập --Thực hiện thảo luận Cử đại diện học sinh lên bảng vẽ đồ thị. a. b. 4. Củng cố toàn bài - Nắm đ/n, tính chất của hs mũ, lôgarit - Cách tính đạo hàm của hs mũ, lôgarit - Vẽ đồ thị của hs mũ, lôgarit 5. Xem trước bài mới, làm các bài tập trong sgk.
Tài liệu đính kèm: