Giáo án Giải tích 12 nâng cao tiết 1 đến 11

Giáo án Giải tích 12 nâng cao tiết 1 đến 11

Số tiết 3: ( 2LT+1 BT) Bài 1: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ

 I/ Mục tiêu :

 1/Kiến thức : Hiểu được định nghĩa và các định lý về sự đồng biến ,nghịch biến của hàm

 số và mối quan hệ này với đạo hàm

 2/Kỹ năng : Biết cách xét tính đồng biến ,nghịch biến của hàm số trên một khoảng dựa

 vào dấu đạo hàm

 3/ Tư duy thái độ : Tập trung tiếp thu , suy nghĩ phát biểu xây dựng bài

 II/ Chuẩn bị :

 1/ Giáo viên: giáo án , dụng cụ vẽ

 2/ Học sinh : đọc trước bài giảng

 III/ Phương pháp : Đàm thoại ,gợi mở , đặt vấn đề

 IV/ Tiến trình bài học :

 1/ ổn định lớp : kiểm tra sĩ số , làm quen cán sự lớp

 2/ Kiểm tra kiến thức cũ(5p)

 

doc 23 trang Người đăng ngochoa2017 Lượt xem 761Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Giải tích 12 nâng cao tiết 1 đến 11", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày 10/08/2009
 Số tiết 3: ( 2LT+1 BT) Bài 1: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
 I/ Mục tiêu :
 1/Kiến thức : Hiểu được định nghĩa và các định lý về sự đồng biến ,nghịch biến của hàm 
 số và mối quan hệ này với đạo hàm
 2/Kỹ năng : Biết cách xét tính đồng biến ,nghịch biến của hàm số trên một khoảng dựa 
 vào dấu đạo hàm
 3/ Tư duy thái độ : Tập trung tiếp thu , suy nghĩ phát biểu xây dựng bài
 II/ Chuẩn bị :
 1/ Giáo viên: giáo án , dụng cụ vẽ
 2/ Học sinh : đọc trước bài giảng
 III/ Phương pháp : Đàm thoại ,gợi mở , đặt vấn đề
 IV/ Tiến trình bài học :
 1/ ổn định lớp : kiểm tra sĩ số , làm quen cán sự lớp
 2/ Kiểm tra kiến thức cũ(5p)
 Câu hỏi 1 : N êu định nghĩa đạo hàm của hàm số tại điểm x0
 Câu hỏi 2 : Nêu định nghĩa sự đồng biến, nghịch biến ở lớp 10 , từ đó nhận xét dấu 
 tỷ số trong các trường hợp
 GV : Cho HS nhận xét và hoàn chỉnh
 GV : Nêu mối liên hệ giữa tỷ số đó với đạo hàm của hàm số y = f(x) tại 1 điểm x K
 đồng thời đặt vấn đề xét tính đơn điệu của hàm số trên 1 khoảng , đoạn ,nữa khoảng
 bằng ứng dụng của đạo hàm 
 3/ Bài mới: Giới thiệu định lí
 HĐTP1 : Giới thiệu điều kiện cần của tính đơn điệu
T/G
 HĐ của giáo viên
 HĐ của học sinh
 Ghi bảng
10p
Giới thiệu điều kiện cần để hàm số đơn điệu trên 1 khoảng I
 HS theo dõi , tập trung
Nghe giảng
I/ Điều kiện cần để hàm số đơn điệu trên khoảng I
a/ Nếu hàm số y = f(x) đồng biến trên khoảng I thì f/(x)0 
với xI
b/ Nếu hàm số y = f(x) nghịch biến trên khoảng I thì f/(x) 0
với xI
 HĐTP 2 : Giới thiệu định lí điều kiện đủ để hàm số đơn điệu trên khoảng I
10p
Giới thiệu định lí về đk đủ của tính đơn điệu
-Nêu chú ý về trường hợp hàm số đơn điệu trên doạn , nữa khoảng ,nhấn mạnh giả thuyết hàm số f(x) liên tục trên đoạn ,nữa khoảng
Giới thiệu việc biểu diển chiều biến thiên bằng bảng
- Nhắc lại định lí ở sách khoa
HS tập trung lắng nghe, ghi chép
Ghi bảng biến thiên
II/ Điều kiện đủ để hàm số đơn điệu trên khoảng I
1/ Định lí : SGK trang 5
2/ chú ý : Định lí trên vẫn đúng
Trên đoạn ,nữa khoảng nếu hàm số liên tục trên đó
Chẳng hạn f(x)liên tục trên [a;b]
Và f /(x)>0 với x(a;b) => f(x) đồng biến trên [a;b]
-bảng biến thiên SGK trang 5
HOẠT ĐỘNG 2: Củng cố định lí
10p
10p
-Nêu ví dụ
-Hướng dẫn các bước xét chiều biến thiên của hàm số
Gọi HS lên bảng giải
-nhận xét và hoàn thiện
Nêu ví dụ 2
Yêu cầu HS lên bảng thực hiện các bước 
Gọi 1 HS nhận xét bài làm
- Nhận xét đánh giá ,hoàn thiện
Ghi chép và thực hiện các bước giải
Ghi ví dụ thực hiện giải
lên bảng thực hiện
Nhận xét
Ví dụ 1: Xét chiều biến thiên của hàm số y = x4 – 2x2 + 1
 Giải
TXĐ D = R
y / = 4x3 – 4x
y / = 0 [
bảng biến thiên
x
- -1 0 1 +
y
 - 0 + 0 - 0 +
y
 \ 0 / 1 \ 0 /
Hàm số đồng biến trên các khoảng (-1;0) và (1 ; +)
Hàm số nghịch biến trên các khoảng (-;-1) và (0;1)
Ví dụ 2: Xét chiều biến thiên của hàm số y = x + 
Bài giải : ( HS tự làm)
Bài tậpvề nhà 1 , 2 (SGK)
Tiết 2
10p
10p
Nêu ví dụ 3
yêu cầu học sinh thực hiện các bước giải
Nhận xét , hoàn thiện bài giải
Do hàm số liên tục trên R nên Hàm số liên tục
trên (-;2/3] và[2/3; +) 
-Kết luận 
- Mở rộng đ ịnh lí thông qua nhận xét
Nêu ví dụ 4
Yêu cầu HS thực hiện các bước giải 
Ghi chép thực hiện bài giải
TXĐ
tính y /
Bảng biến thiên
Kết luận
Chú ý , nghe ,ghi chép
Ghi ví dụ .suy nghĩ giải
Lên bảng thực hiện
Ví dụ 3: xét chiều biến thiên của hàm số y = x3 -x2 +x +
 Giải
TXĐ D = R 
y / = x2 -x + = (x -)2 >0
với x 2/3
y / =0 x = 2/3
Bảng biến thiên
x
- 2/3 + 
y
 + 0 + 
y
 / 17/81 /
Hàm số liên tục trên (-;2/3] và
[2/3; +) 
Hàm số đồng biến trên các nữa khoảng trên nên hàm số đồng biến trên R
Nhận xét: Hàm số f (x) có đạo hàm trên khoảng I nếu f /(x) 0
(hoặc f /(x) 0) với xI và 
 f /(x) = 0 tại 1 số điểm hữu hạn 
của I thì hàm số f đồng biến (hoặc nghịch biến) trên I
Ví dụ 4: c/m hàm số y =
nghịch biến trên [0 ; 3]
 Giải
TXĐ D = [-3 ; 3] , hàm số liên tục trên [0 ;3 ]
y/ = < 0 với x(0; 3)
Vậy hàm số nghịch biến trên
[0 ; 3 ]
HOẠT ĐỘNG 3 : Giải bài tập SGK TRANG 7
10p
10p
 Bài 1 : HS tự luyện
Ghi bài 2b
Yêu cầu HS lên bảng giải
Ghi bài 5
Hướng dẫn HS dựa vào cơ sở lý thuyết đã học xác định yêu cầu bài toán
Nhận xét , làm rõ vấn đề
HSghi đề ;suy nghĩ cách giải
Thực hiện các bước 
tìm TXĐ
Tính y /xác định dấu y 
Kết luận
Ghi đề ,tập trung giải
trả lời câu hỏi của GV
2b/ c/m hàm sồ y =
nghịch biến trên từng khoảng xác định của nó
 Giải
TXĐ D = R \{-1}
y/ = < 0 xD
Vậy hàm số nghịch biến trên tựng khoảng xác định
5/ Tìm các giá trị của tham số a
để hàmsốf(x) =x3 + ax2+ 4x+ 3
đồng biến trên R
 Giải
TXĐ D = R và f(x) liên tục trên R
y/ = x2 + 2ax +4
Hàm số đồng biến trên R 
y/0 với xR , x2+2ax+4
có / 0 
 a2- 4 0 a [-2 ; 2]
Vậy với a [-2 ; 2] thì hàm số đồng biến trên R
4/ Củng cố(3p) : - Phát biểu định lí điều kiện đủ của tính đơn điệu? Nêu chú ý
Nêu các bước xét tính đơn điệu của hàm số trên khoảng I?
Phương pháp c/m hàm sốđơn điệu trên khoảng ; nữa khoảng , đoạn
5/ hướng dẫn học và bài tập về nhà(2p):
Nắm vững các định lí điều kiện cần , điều kiện đủ của tính đơn điệu
Các bước xét chiều biến thiên của 1 hàm số
Bài tập phần luyện tập trang 8 ; 9 trong SGK
TIẾT 3 
Bài giảng : Luyện tập
 I/ Mục tiêu :
 1/Kiến thức :HS nắm vững phương pháp xét chiều biến thiên của hàm số
 2/Kỹ năng : Vận dụng được vào việc giải quyết các bài toán về đơn điệu của hàm số
 3/ Tư duy thái độ : Tập trung tiếp thu , suy nghĩ phát biểu xây dựng bài
 II/ Chuẩn bị :
 1/ Giáo viên: giáo án 
 2/ Học sinh : Chuẩn bị trước bài tập ở nhà
 III/ Phương pháp : Đàm thoại ,gợi mở , đặt vấn đề
 IV/ Tiến trình bài học :
 1/ ổn định lớp : kiểm tra sĩ số 
 2/ Kiểm tra bài cũ(5p)
 Câu hỏi : Nêu các bước xác định tính đơn điệu của hàm số
 áp dụng xét tính đơn điệu của hàm số y = x3 -6x2 + 9x – 1
 3/ Bài mới : Giải bài luyện tập trang 8
 HOẠT ĐỘNG 1 : Giải bài tập 6e
T/G
 Hoạt động của GV
 Hoạt động của HS
 Ghi bảng
7p
Ghi đề bài 6e
Yêu cầu học sinh thực hiện các bước 
Tìm TXĐ
Tính y/
xét dấu y/
Kết luận
GV yêu cầu 1 HS nhận xét bài giải
GV nhận xét đánh giá, hoàn thiện
Ghi bài tập
Tập trung suy nghĩ và giải
Thưc hiện theo yêu cầu của GV 
HS nhận xét bài giải của bạn
6e/ Xét chiều biến thiên của hàm số 
 y = 
 Giải
TXĐ xR
y/ = 
y/ = 0 x = 1
Bảng biến thiên
x
- 1 +
y
 - 0 +
y
 \ /
Hàm số đồng biến trên (1 ; +) và nghịch biến trên (-; 1)
Hoạt động 2 :Giải bài tập 6f
7p
GV ghi đề bài 6f
Hướng dẫn tương tự bài 6e
Yêu cầu 1 HS lên bảng giải
GV nhận xét ,hoàn chỉnh
HS chép đề ,suy nghĩ giải
HS lên bảng thực hiện
6f/ Xét chiều biến thiên của hàm số 
 y = - 2x 
 Giải
TXĐ D = R\ {-1}
y / = 
y/ < 0 x-1
Hàm số nghịch biến trên 
(-; -1) và (-1 ; +)
Hoạt động 3 : Giải bài tập 7
10p
Ghi đề bài 7
Yêu cầu HS nêu cách giải
Hướng dẫn và gọi 1 HS 
Lên bảng thực hiện
Gọi 1 HS nhận xét bài làm của bạn
GV nhận xét đánh giá và hoàn thiện
Chép đề bài
Trả lời câu hỏi
Lên bảng thực hiện
HS nhận xét bài làm
7/ c/m hàm số y = cos2x – 2x + 3
nghịch biến trên R
 Giải
TXĐ D = R
y/ = -2(1+ sin2x) 0 ; x R
y/ = 0 x = - +k (k Z)
Do hàm số liên tục trên R nên liên tục trên từng đoạn
 [- + k ; - +(k+1) ] và
y/ = 0 tại hữu hạn điểm trên các đoạn đó
Vậy hàm số nghịch biến trên R
Hoạt động 4 : Giải bài tập 9
10p
Ghi đề bài 9
GV hướng dẫn:
Đặt f(x)= sinx + tanx -2x
Y/câù HS nhận xét tính liên tục của hàm số trên 
[0 ; )
y/c bài toán 
c/m f(x)= sinx + tanx -2x
đồng biến trên [0 ; )
Tính f / (x)
Nhận xét giá trị cos2x trên
(0 ; ) và so sánh cosx và cos2x trên đoạn đó
nhắc lại bđt Côsi cho 2 số không âm? =>
cos2x +?
Hướng dẫn HS kết luận
HS ghi đề bài
tập trung nghe giảng
Trả lời câu hỏi
HS tính f/(x)
Trả lời câu hỏi 
HS nhắc lại BĐT côsi
Suy đượccos2x + > 2
9/C/m sinx + tanx> 2x với 
x(0 ; )
 Giải
Xét f(x) = sinx + tanx – 2x
f(x) liên tục trên [0 ; )
f/ (x) = cosx + -2
với x(0 ; ) ta có
 0 cosx > cos2x nên
 Theo BĐT côsi 
Cosx+-2 >cos2x+-2>0
f(x) đồng biến Trên [0 ; ) nên f(x)>f(0) ;vớix(0 ;)
f(x)>0,x(0 ; ) 
Vậy sinx + tanx > 2x với 
 x(0 ; )
4/ Củng cố (3p): 
 Hệ thống cách giải 3 dạng toán cơ bản là
Xét chiều biến thiên
C/m hàm số đồng biến, nghịch biến trên khoảng , đoạn ; nữa khoảng cho trước 
C/m 1 bất đẳng thức bằng xử dụng tính đơn điệu của hàm số 
5/ Hướng dẫn học và bài tập về nhà(3p)
Nắm vững lý thuyết về tính đơn điệu của hàm số
Nắm vững cách giải các dạng toán bằng cách xử dụng tính đơn điệu
Giải đầy đủ các bài tập còn lại của sách giáo khoa
Tham khảo và giải thêm bài tập ở sách bài tập
 ********************************************
Số tiết: 3(2LT+1BT) CỰC TRỊ CỦA HÀM SỐ
I. Mục tiêu:
 + Về kiến thức:
 Qua bài này học sinh cần hiểu rõ:
 - Định nghĩa cực đại và cực tiểu của hàm số
 - Điều kiện cần và đủ để hàm số đạt cực đại hoặc cực tiểu.
 - Hiểu rỏ hai quy tắc 1 và 2 để tìm cực trị của hàm số.
 + Về kỹ năng:
 Sử dụng thành thạo quy tắc 1 và 2 để tìm cực trị của hàm số và một số bài toán có liền quan đến cực trị.
 + Về tư duy và thái độ:
 - Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
 - Tư duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
II. Chuẩn bị của giáo viên và học sinh:
 + Giáo viên: Bảng phụ minh hoạ các ví dụ và hình vẽ trong sách giáo khoa.
 + Học sinh: làm bài tập ở nhà và nghiên cứu trước bài mới.
III. Phương pháp: 
- Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp.
IV. Tiến trình bài học:
1. Ổn định tổ chức: kiểm tra sĩ số học sinh
2. Kiểm tra bài cũ:
	Câu hỏi: Xét sự biến thiên của hàm số: y = -x3 + 3x2 + 2
Thời gian
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
10’
- Gọi 1 học sinh lên trình bày bài giải.
- Nhận xét bài giải của học sinh và cho điểm.
- Treo bảng phụ 1 có bài giải hoàn chỉnh.
- Trình bày bài giải
(Bảng phụ 1)
3. Bài mới:
Tiết 4
Hoạt động 1: Tìm hiểu khái niệm cực trị của hàm số
Thời gian
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
8’
- Yêu cầu học sinh dựa vào BBT (bảng phụ 1) trả lời 2 câu hỏi sau: 
* Nếu xét hàm số trên khoảng (-1;1); với mọi x thì f(x) f(0) hay f(x) f(0)?
* Nếu xét hàm số trên khoảng (1;3); ( với mọi x thì f(x)f(2) hay f(x) f(2)?
- Từ đây, Gv thông tin điểm x = 0 là điểm cực tiểu, f(0) là giá trị cực tiểu và điểm x = 2 là gọi là điểm cực đại, f(2) là giá trị cực đại.
- Gv cho học sinh hình thành khái niệm về cực đại và cực tiểu.
- Gv treo bảng phụ 2 minh hoạ hình 1.1 trang 10 và diễn giảng cho học sinh hình dung điểm cực đại và cực tiểu.
- Gv lưu ý thêm cho học sinh:
Chú ý (sgk trang 11)
- Trả lời : f(x) f(0)
- Trả lời : f(2) f(x)
- Học sinh lĩnh hội, ghi nhớ.
- Định nghĩa: (sgk trang 10)
Hoạt động 2: Điều kiện cần để hàm số có cực trị
Thời gian
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
12’
- Gv yêu cầu học sinh quan sát đồ thị hình 1.1 (bảng phụ 2) và dự đoán đặ ... V: Giáo án, bảng phụ
2/ Hs: nắm vững lí thuyết về cực trị, GTLN, GTNN. Chuẩn bị trước bt ở nhà.
III/ Phương pháp: Gợi mở, vấn đáp
IV/ Tiến trình tiết dạy:
1/ Ổn định lớp:
3/ Bài mới:
HĐ1: Tìm cực trị của h/s và giá trị của tham số để hàm số có cực trị.
Tg
HĐ của GV
HĐ của HS
Ghi bảng
10’
10’
Yêu cầu hs nghiên cứu bt 21, 22 trang 23.
Chia hs thành 3 nhóm:
+Nhóm 1: bài 21a
+Nhóm 2: bài 21b
+Nhóm 3: bài 22
Gọi đại diện từng nhóm lên trình bày lời giải.
+ mời hs nhóm khác theo dõi và nhận xét.
+ GV kiểm tra và hoàn chỉnh lời giải.
+ Làm việc theo nhóm
+ Cử đại diện nhóm trình bày lời giải
+ Hsinh nhận xét
Bài 21/ 23: Tìm cực trị của hàm số sau:
Bài 22: Tìm m để h/s sau có CĐ, CT
HĐ2: Tìm GTLN, GTNN của hàm số
Tg
HĐ của GV
HĐ của HS
Ghi bảng
10’
Yêu cầu nghiên cứu bài 27 trang 24. chọn giải câu a,c,d
*Gọi 1 học sinh nhắc lại quy tắc tìm GTLN, GTNN của h/s trên [a,b]
*Chia lớp thành 3 nhóm:
+Nhóm 1: giải bài 27a
+Nhóm 2: giải bài 27c
+Nhóm 3: giải bài 27d
*Cho 4phút cả 3 nhóm suy nghĩ
Mời đại diện từng nhóm lên trình bày lời giải.
(Theo dõi và gợi ý từng nhóm)
Mời hs nhóm khác nhận xét
GV kiểm tra và kết luận
*Phương pháp tìm GTLN, GTNN của hàm lượng giác
HS nghiên cứu đề
+HS nhắc lại quy tắc. 
+Cả lớp theo dõi và nhận xét.
+ Làm việc theo nhóm
+ Cử đại diện trình bày lời giải.
+ HS nhận xét, cả lớp theo dõi và cho ý kiến.
Bài 27/ 24: Tìm GTLN, GTNN của h/s:
HS trình bày bảng
HĐ 4: Củng cố
Tg
HĐ của GV
HĐ của HS
Ghi bảng
10’
Yêu cầu hs nghiên cứu bài 26 trang 23.
*Câu hỏi hướng dẫn:
?: Tốc độ truyền bệnh được biểu thị bởi đại lượng nào?
?: Vậy tính tốc độ truyền bệnh vào ngày thứ 5 tức là tính gì?
+Gọi hs trình bày lời giải câu a
+ Gọi hs nhận xét , GV theo dõi và chỉnh sửa.
?: Tốc độ truyền bệnh lớn nhất tức là gì?
Vậy bài toán b quy về tìm đk của t sao cho f’(t) đạt GTLN và tính max f’(t).
+ Gọi 1 hs giải câu b.
+ Gọi hs khác nhận xét.
+ Gv nhận xét và chỉnh sửa
?: Tốc độ truyền bệnh lớn hơn 600 tức là gì?
+ Gọi 1 hs giải câu c, d.
+ Gọi hs khác nhận xét.
+ Gv nhận xét và chỉnh sửa
HS nghiên cứu đề
HSTL: đó là f’(t)
TL: f’(5)
a/ Hs trình bày lời giải và nhận xét
TL: tức là f’(t) đạt GTLN
Hs trình bày lời giải và nhận xét
TL: tức f’(t) >600
Hs trình bày lời giải câu c,d và nhận xét
Bài 26/23: Số ngày nhiễm bệnh từ ngày đầu tiên đến ngày thứ t là:
f(t) = 45t2 – t3
với t:=0,1,2,,25
a/ tính f’(5)
b/ Tìm t để f’(t) đạt GTLN, GTNN, tìm maxf’(t)
c/ Tiàm t để f’(t) >600
d/ Lập bảng biến thiên của f trên [0;25]
HS trình bày bảng
4/ Củng cố: (3’) Nhắc lại đk đủ để hsố có cực trị, quy tắc tìm GTLN, GTNN của hsố trên khoảng, đoạn.
5/ Hướng dẫn học ở nhà: 2’
+ Lưu ý cách chuyển bài toán tìm GTLN, GTNN của hàm số lượng giác về bài toán dạng đa thức.
+ Ôn kỹ lại lý thuyết và giải các bài tập 24, 25, 27, 28 SGK trang 23.
Số tiết: 1 Tiết 9: ĐỒ THỊ CỦA HÀM SỐ 
 VÀ PHÉP TỊNH TIẾN HỆ TOẠ ĐỘ
I/ Mục tiêu:
Kiến thức:
Hiểu được phép tịnh tiến hệ toạ độ theo một véc tơ cho trước- Lập các công thức chuyển hệ toạ độ trong phép tịnh tiến và viết phương trình đường cong đối với hệ toạ độ mới.
Xác định tâm đối xứng của đồ thị một số hàm số đơn giản.
Kỷ năng:
Viết các công thức chuyển hệ toạ độ.
Viết phương trình của đường cong đối với hệ toạ độ mới.
Áp dụng phép tịnh tiến hệ toạ độ tìm tâm đối xứng của đồ thị hàm số đa thức bậc 3 và các hàm phân thức hửu tỉ.
II/ Chuẩn bị của giáo viên và học sinh:
Giáo viên: Bảng phụ hình 15 SGK
Học sinh: Ôn lại định nghĩa đồ thị hàm số- Định nghĩa hàm số chẵn, hàm số lẻ.
III/ Phương pháp: Gợi mở + vấn đáp.
IV/ Tiến trình bài học:
Ôn định tổ chức:
Kiểm tra bài cũ:( 7’)
Nêu lại định nghĩa đồ thị hàm số y=f(x) xác định trên tập D
Đồ thị hàm số y =2x + 3, y = 3x2 -2x -1?
Nêu định nghĩa hàm số chẵn, hàm số lẽ của hàm số y=f(x) xác định trên tập D.
Bài mới: Trong nhiều trường hợp thay hệ toạ độ đã có bỡi một hệ toạ độ mới giúp ta nghiên cứu đường cong thuận tiện hơn.
HĐ1: Phép tịnh tiến hệ toạ độ và công thức chuyển hệ toạ độ
TG
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
13’
-GV treo bảng phụ hình 15 Sgk.
-GV giới thiệu hệ toạ độ Oxy, IXY, toạ độ điểm M với 2 hệ toạ độ.
-Phép tịnh tiến hệ toạ độ theo vec tơ công thức chuyển toạ độ như thế nào?
-Nêu được biểu thức theo qui tắc 3 điểm O, I, M = +
-Nêu được biểu thức giải tích: 
-Kết luận được công thức:
-Với điễm 
- Công thức chuyển hệ toạ độ trong phép tịnh tiến theo vec tơ 
HĐ2: Phương trình cuả đường cong đối với hệ toạ độ mới:	
4’
4’
6’
6’ 
Oxy: y=f(x) (C)
IXY: y=f(x) → Y=F(X) ?
-GV cho HS tham khảo Sgk.
-GV cho HS làm HĐ trang 26 Sgk
y= 2x2-4x
-GV cho HS giải BT 31/27 Sgk
-Học sinh nhắc lại công thức chuyển hệ toạ độ
-Thay vào hàm số đã cho
Kết luận: Y=f(X+x0) –y0
-Nêu được đỉnh của Parabol
-Công thức chuyển hệ toạ độ
-PT của của (P) đối với IXY
+
+ 
Ví dụ: (sgk)
a,Điểm I(1,-2) là đỉnh của Parabol (P)
b, Công thức chuyển hệ toạ độ theo 
PT của (P) đối với IXY Y=2X2
Củng cố toàn bài:(2’)
Công thức chuyển hệ toạ độ.
Chú ý HS đối với hàm hửu tỉ ta thực hiện phép chia rồi mới thay công thức vào hàm số để bài toán đơn giản hơn.
Hướng dẫn bài tập về nhà: (3’)
BT 29/27 , 30/27 Hướng dẫn câu (c)
BT 32/28 Hướng dẫn câu (b)
Số tiết : 2 tiết.
 Tiết 10,11: ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
I. Mục tiêu:
	1) Về kiến thức:
– Nắm vững định nghĩa tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.
– Nắm được cách tìm các đường tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.
	2) Về kỹ năng:
– Thực hiện thành thạo việc tìm các đường tiệm cận của đồ thị hàm số.
– Nhận thức được hàm phân thức hữu tỉ (không suy biến)có những đường tiệm cận nào.
	3) Về tư duy và thái độ:
– Tự giác, tích cực trong học tập.
– Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ về quen, có tinh thần hợp tác xây dựng cao.
II. Chuẩn bị của giáo viên và học sinh:
	Giáo viên: 	- Giáo án, bảng phụ, phiếu học tập .
	Học sinh: 	– Sách giáo khoa. 
– Kiến thức về giới hạn.
III. Phương pháp:
	Dùng các phương pháp gợi mở, vấn đáp, nêu vấn đề và giải quyết vấn đề, hoạt động nhóm..
IV. Tiến trình bài học:
	1. Ổn định lớp.
	2. Kiểm tra bài cũ: (5’)
	Câu hỏi 1: Tính các giới hạn sau:
 ...,..., ...,...
	Câu hỏi 2: Tính các giới hạn sau:
	a. 	b. 
	 + Cho học sinh trong lớp nhận xét câu trả lời của bạn.
	+ Nhận xét câu trả lời của học sinh, kết luận và cho điểm. 
	3. Bài mới:.
	HĐ1: Hình thành định nghĩa tiệm cận đứng , tiệm cận ngang
Thời gian
Hoạt động của giáo viên 
Hoạt động của học sinh 
Ghi bảng
18’
+ Treo bảng phụ có vẽ đồ thị của hàm số y =.Theo kết quả kiểm tra bài cũ ta có 
Điều này có nghĩa là khoảng cách MH = |y| từ điểm M trên đồ thị đến trục Ox dần về 0 khi M trên các nhánh của hypebol đi xa ra vô tận về phía trái hoặc phía phải( hình vẽ). lúc đó ta gọi trục Ox là tiệm cận ngang của đồ thị hàm số y = .
+Cho HS định nghĩa tiệm cận ngang.(treo bang phụ vẽ hình 1.7 trang 29 sgk để học sinh quan sát)
+Chỉnh sửa và chính xác hoá định nghĩa tiệm cận ngang.
+Tương tự ta cũng có:
Nghĩa là khoảng cách NK = |x| từ N thuộc đồ thị đến trục tung dần đến 0 khi N theo đồ thị dần ra vô tận phía trên hoặc phía dưới.Lúc đó ta gọi trục Oy là tiệm cận đứng của đồ thị hàm số y = .
- Cho HS định nghĩa tiệm cận đứng.( treo bảng phụ hình 1.8 trang 30 sgk để HS quan sát)
- GV chỉnh sửa và chính xác hoá định nghĩa.
- Dựa vào định nghĩa hãy cho biết phương pháp tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số.
+ HS quan sát bảng phụ.
+ Nhận xét khi M dịch chuyển trên 2 nhánh của đồ thị qua phía trái hoặc phía phải ra vô tận thì MH = dần về 0
Hoành độ của M thì MH = |y| .
HS đưa ra định nghĩa.
+Hs quan sát đồ thị và đưa ra nhận xét khi N dần ra vô tận về phía trên hoặc phía dưới thì khoảng cách NK = |x| dần về 0.
+HS đưa ra định nghĩa tiệm cận đứng.
+HS trả lời.
1. Đường tiệm cận đứng và đường tiệm cận ngang.
* Định nghĩa 1:SGK
* Định nghĩa 2: SGK
	HĐ2 :Tiếp cận khái niệm tiệm cận đứng và tiệm cận ngang.
Thời gian
Hoạt động của giáo viên 
Hoạt động của học sinh 
Ghi bảng
11’
10’
2’
- Cho HS hoạt động nhóm.
- Gọi đại diện 2 nhóm lên bảng trình bày bài tập 1,2 của VD 1.
- Đại diện các nhóm còn lại nhận xét.
- GV chỉnh sữa và chính xác hoá.
- Cho HS hoạt động nhóm. 
Đại diện nhóm ở dưới nhận xét.
+ câu 1 không có tiệm cận ngang.
+ Câu 2 không có tiệm cận ngang.
- Qua hai VD vừa xét em hãy nhận xét về dấu hiệu nhận biết phân số hữu tỉ có tiệm cận ngang và tiệm cận đứng.
+ Đại diện nhóm 1 lên trình bày câu 1, nhóm 2 trình bày câu 2
+Đại diện hai nhóm lên giải..
+HS ; Hàm số hữu tỉ có tiệm cận ngang khi bậc của tử nhỏ hơn hoặc bằng bậc của mẫu, có tiệm cận đứng khi mẫu số có nghiệm và nghiệm của mẫu không trùng nghiệm của tử.
Ví dụ 1: Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số.
1, y = 
2, y = 
Ví dụ 2:Tìm tiệm cận đứng và tiệm cận ngang của các hàm số sau:
1, y = 
2 , y = .
Tiết 10	HĐ3: Hình thành và tiếp cận khái niệm tiệm cận xiên:
Thời gian
Hoạt động của giáo viên 
Hoạt động của học sinh 
Ghi bảng
 15’
3’
7’
 3’ 
12’
- Treo bảng phụ vẽ hình 1.11 trang 33 SGK.
+ Xét đồ thị (C) của hàm số y = f(x) và đường thẳng (d) y = ax+ b (a ) . Lấy M trên (C ) và N trên (d) sao cho M,N có cùng hoành độ x.
+ Hãy tính khơảng cách MN.
+ Nếu MN khi x( hoặc x ) thì ( d) được gọi là tiệm cận xiên của đồ thị (d).
- Từ đó yêu cầu HS định nghĩa tiệm cận xiên của đồ thị hàm số.
- GV chỉnh sửa và chính xác hoá .
 +Lưu ý HS: Trong trường hợp hệ số a của đường thẳng 
y = ax + b bằng 0 mà (hoặc ) Điều đó có nghĩa là (hoặc )
Lúc này tiệm cận xiên của đồ thị hàm số cũng là tiệm cận ngang.
 Vậy tiệm cận ngang là trường hợp đặc biệt của tiệm cận xiên.
+Gợi ý học sinh dùng định nghĩa CM.Gọi một học sinh lên bảng giải.
Gọi 1 HS nhận xét sau đó chính xác hoá.
Qua ví dụ 3 ta thấy hàm số y = có tiệm cận xiên là y = 2x + 1 từ đó đưa ra dấu hiệu dự đoán tiệm cận xiên của một hàm số hữu tỉ.
+ Cho HS hoạt động nhóm:
Gợi ý cho HS đi tìm hệ số a,b theo chú ý ở trên.
+ Gọi HS lên bảng giải
Cho HS khác nhận xét và GV chỉnh sửa , chính xác hoá.
+ HS quan sát hình vẽ trên bảng phụ.
+HS trả lời khoảng cách MN = |f(x) – (ax + b) | .
+HS đưa ra đinh nghĩa
+HS chứng minh.
Vì y – (2x +1) = khi và x nên đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số đã cho (khi x và x )
HS lên bảng trình bày lời giải.
2,Đường tiệm cận xiên:
Định nghĩa 3(SGK)
Ví dụ 3: Chứng minh rằng đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số y = 
*Chú ý: về cách tìm các hệ số a,b của tiệm cận xiên.
CM (sgk)
Hoặc
Ví dụ 4:Tìm tiệm cận xiên của đồ thị hàm số sau:
1/y=
2/ y = 2x + 
	4.Củng cố 3’ 
* Giáo viên cũng cố từng phần:
- Định nghĩa các đường tiệm cận.
- Phương pháp tìm các đường tiệm cận .
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: (2’)
	+ Nắm vững các kiến thức đã học: khái niệm đường tiệm cận và phương pháp tìm tiệm cận của hàm số, dấu hiệu hàm số hữu tỉ có tiệm cận ngang , tiệm cận đứng, tiệm cận xiên. Vận dụng để giải các bài tập SGK.
2/Bảng phụ: 
Hình 1.6 trang 28 SGK.
Hình 1.7 trang 29 SGK
Hình 1.9 trang 30 SGK 
Hình 1.11 trang 33 SGK.

Tài liệu đính kèm:

  • docGIÁO ÁN GT 12NC( T1-T11).doc