Giáo án Giải tích 12 cơ bản tiết 42: Bài tập phương trình mũ- Phương trình logarit

Giáo án Giải tích 12 cơ bản tiết 42: Bài tập phương trình mũ- Phương trình logarit

I. Mục tiêu:

 + Về kiến thức:

 • Biết các dạng phương trình mũ và phương trình logarit co bản.

 • Biết phương pháp giải một số phương trình mũ và phương trình logarit đơn giản.

 + Về kỹ năng:

 • Biết vận dụng các tính chất của hàm số mũ, hàm số logarit vào giải các phương trình mũ và logarit cơ bản.

 • Biết cách vận dụng phương pháp đặt ẩn phụ, phương pháp vẽ đồ thị và các phương pháp khác vào giải phương trình mũ, phương trình logarrit đơn giản.

 + Về tư duy và thái độ:

 • Hiểu được cách biến đổi đưa về cùng một cơ số đối với phương trình mũ và phương trình logarit.

 • Tổng kết được các phương pháp giải phương trình mũ và phương trình logarit.

 

doc 3 trang Người đăng ngochoa2017 Lượt xem 848Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Giải tích 12 cơ bản tiết 42: Bài tập phương trình mũ- Phương trình logarit", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần 15.
Tiết chương trình : 42
Ngày dạy:29P/11/2010
BÀI TẬP PHƯƠNG TRÌNH MŨ- PHƯƠNG TRÌNH LOGARIT
I. Mục tiêu:
 + Về kiến thức:
	• Biết các dạng phương trình mũ và phương trình logarit co bản.
	• Biết phương pháp giải một số phương trình mũ và phương trình logarit đơn giản.
 + Về kỹ năng:
	• Biết vận dụng các tính chất của hàm số mũ, hàm số logarit vào giải các phương trình mũ và logarit cơ bản.
	• Biết cách vận dụng phương pháp đặt ẩn phụ, phương pháp vẽ đồ thị và các phương pháp khác vào giải phương trình mũ, phương trình logarrit đơn giản.
 + Về tư duy và thái độ:
	• Hiểu được cách biến đổi đưa về cùng một cơ số đối với phương trình mũ và phương trình logarit.
	• Tổng kết được các phương pháp giải phương trình mũ và phương trình logarit.
II. Trọng Tâm : 
 - Giải phương trình Mũ - Logarit
III. Chuẩn bị :
	+ Giáo viên: Giáo án, bảng phụ, các phương tiện dạy học cần thiết.
	+ Học sinh: SGK, giấy bút, phiếu trả lời.
IV. Tiến trình bài học:
	1. Ổn định tổ chức: 
	2. Kiểm tra bài cũ: 
Nêu các cách giải phương trình mũ và logarit ?
Giải phương trình: (0,5)x+7. (0,5)1-2x = 4 
	3. Bài mới:
Hoaït ñoäng cuûa thaày , troø
Noäi dung baøi daïy
- Yêu cầu học sinh nhắc lại các cách giải một số dạng pt mũ và logarit đơn giản ?
-Pt(1) có thể biến đổi đưa về dạng pt nào đã biết, nêu cách giải ? .
-Pt (2) giải bằng P2 nào? 
- Trình bày các bước giải ?
- Nhận xét về các cơ số luỷ thừa có mũ x trong phương trình (3) ? 
- Bằng cách nào đưa các cơ số luỹ thừa có mũ x của pt trên về cùng một cơ số ? 
- Nêu cách giải ?
-Pt (4) dùng p2 nào để giải ?
-Lấy logarit theo cơ số mấy ?
GV: hướng dẫn HS chọn cơ số thích hợp để dễ biến đổi .
-HS trình bày cách giải ?
Điều kiện của pt(5) ?
-Nêu cách giải ?
Phương trình (6) biến đổi tương đương với hệ nào ? vì sao ? 
- x>5
-Đưa về dạng : 
-pt(6) ó 
Bài 1: Giải các phương trình:
a)2x+1 + 2x-1+2x =28 (1)
b)64x -8x -56 =0 (2)
c) 3.4x -2.6x = 9x (3)
d) 2x.3x-1.5x-2 =12 (4)
Giải:
a) pt(1) ó 2x =28 ó 2x=8 
ó x=3. Vậy nghiệm của pt là x=3.
b) Đặt t=8x, ĐK t>0
Ta có pt: t2 –t -56 =0
 ó 
.Với t=8 pt 8x=8 ó x=1.
Vậy nghiệm pt là : x=1
c) – Chia 2 vế pt (3) cho 9x (9x >0) , ta có:3
Đặt t= (t>0), ta có pt:
3t2 -2t-1=0 ó t=1
Vậy pt có nghiệm x=0.
d) Lấy logarit cơ số 2 của 2 vế pt ta có: 
ó 
Vậy nghiệm pt là x=2
Bài 2: Giải các phương trình sau:
a) (5)
b) (6)
Giải :
a)
ĐK : ó x>5
Pt (5) ó log =3
 ó (x-5)(x+2) =8
 ó 
Vậy pt có nghiệm x=6
b) pt (6) 
 ó 
 ó x=5
Vậy x = 5 là nghiệm.
ó x=3
Cuûng coá vaù luyeän taäp : 
Trình bày lại các bước giải phương trình mũ và logarit bằng những p2 đã học. Lưu ý một số vấn đề về điều kiện của phương trình và cách biến đổi về dạng cần giải.
Höôùng daãn töï hoïc : 
 Giải các phương trình sau:
Giải các phương trình sau:
	a./ 	b./ 
 c./ 	 d./ 
	e./ f) 64 .9x – 84 .12x + 27 .16x = 0 
	Giải:
	a./ (1)
	ĐK: 
	b./ (1) 	ĐK: x>0
	x=3>0 thỏa điều kiện . Vậy phương trình có nghiệm là x=3
c. x = 1
d. x = 1 ; x = 1/2
e. x = 1 
f. x = 1 hoặc x = 2
V.RUÙT KINH NGHIEÄM :

Tài liệu đính kèm:

  • doctiết 42.doc.doc