Giáo án Giải tích 12 CB - Chương 3 - Bài 1: Nguyên hàm

Giáo án Giải tích 12 CB - Chương 3 - Bài 1: Nguyên hàm

§1. NGUYÊN HÀM

I. Mục đích yêu cầu:

1. Về kiến thức:

- Hiểu được định nghĩa nguyên hàm của hàm số trên K, phân biệt rõ một nguyên hàm với họ nguyên hàm của một hàm số.

- Biết các tính chất cơ bản của nguyên hàm.

- Nắm được các phương pháp tính nguyên hàm.

2. Về kĩ năng:

- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và các tính chất của nguyên hàm.

- Sử dụng phương pháp đổi biến số, phương pháp tính nguyên hàm từng phần để tính nguyên hàm.

3. Về tư duy, thái độ:

- Thấy được mối liên hệ giữa nguyên hàm và đạo hàm của hàm số.

- Cẩn thận, chính xác, nghiêm túc, tích cực phát biểu xây dựng bài.

 

doc 5 trang Người đăng ngochoa2017 Lượt xem 849Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Giải tích 12 CB - Chương 3 - Bài 1: Nguyên hàm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần:	13-14	
Tiết:	38-39-40	
§1. NGUYÊN HÀM
I. Mục đích yêu cầu:
1. Về kiến thức:
- Hiểu được định nghĩa nguyên hàm của hàm số trên K, phân biệt rõ một nguyên hàm với họ nguyên hàm của một hàm số.
- Biết các tính chất cơ bản của nguyên hàm.
- Nắm được các phương pháp tính nguyên hàm.
2. Về kĩ năng:
- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và các tính chất của nguyên hàm.
- Sử dụng phương pháp đổi biến số, phương pháp tính nguyên hàm từng phần để tính nguyên hàm.
3. Về tư duy, thái độ:
- Thấy được mối liên hệ giữa nguyên hàm và đạo hàm của hàm số.
- Cẩn thận, chính xác, nghiêm túc, tích cực phát biểu xây dựng bài.
II. Chuẩn bị:
1. Giáo viên: Giáo án, bảng phụ, phiếu học tập.
2. Học sinh: SGK, đọc trước bài mới.
III. Tiến trình bài học:
1. Ổn định lớp: Kiểm tra sỉ số, tác phong
2. Kiểm tra bài cũ:
Câu hỏi: Tìm đạo hàm các hàm số sau: a/ y = x3	b/ y = tanx
3. Bài mới:
Tiết1: Nguyên hàm và các tính chất của nguyên hàm.
Tiết 2: Phương pháp tính nguyên hàm bằng cách đổi biến số.
Tiết 3: Tính nguyên hàm bằng phương pháp tính nguyên hàm từng phần.
Tiết 1:
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG
HĐ1: Nguyên hàm
HĐTP1: Hình thành khái niệm nguyên hàm
- Yêu cầu học sinh thực hiện HĐ1 SGK.
- Từ HĐ1 SGK cho học sinh rút ra nhận xét (có thể gợi ý cho học sinh nếu cần)
- Từ đó dẫn đến việc phát biểu định nghĩa khái niệm nguyên hàm (yêu cầu học sinh phát biểu, giáo viên chính xác hoá và ghi bảng)
HĐTP2: Làm rõ khái niệm
- Nêu 1 vài vd đơn giản giúp học sinh nhanh chóng làm quen với khái niệm (yêu cầu học sinh thực hiện)
H1: Tìm Ng/hàm các hàm số:
a/ f(x) = 2x trên (-∞; +∞)
b/ trên (0; +∞)
c/ f(x) = cosx trên (-∞; +∞)
HĐTP3: Một vài tính chất suy ra từ định nghĩa.
- Yêu cầu học sinh thực hiện HĐ2 SGK.
- Từ đó giáo viên giúp học sinh nhận xét tổng quát rút ra kết luận là nội dung định lý 1 và định lý 2 SGK.
- Yêu cầu học sinh phát biểu và C/M định lý.
- Thực hiện dễ dàng dựa vào kquả KTB cũ.
- Nếu biết đạo hàm của một hàm số ta có thể suy ngược lại được hàm số gốc của đạo hàm.
- Phát biểu định nghĩa nguyên hàm (dùng SGK)
- Học sinh thực hiện được 1 cách dễ dàng nhờ vào bảng đạo hàm.
TH:
a/ F(x) = x2
b/ F(x) = lnx
c/ F(x) = sinx
a/ F(x) = x2 + C
b/ F(x) = lnx + C
c/ F(x) = sinx + C
(với C: hằng số bất kỳ)
- Học sinh phát biểu định lý (SGK).
I. Nguyên hàm và tính chất 
1. Nguyên hàm
Kí hiệu K là khoảng, đoạn hoặc nữa khoảng của IR.
Định nghĩa: (SGK/ T93)
Ví dụ 1: 
a/ F(x) = x2 là ng/hàm hàm số
 f(x) = 2x trên (-∞; +∞)
b/ F(x) = lnx là ng/hàm của
hàm số trên (0; +∞)
c/ F(x) = sinx là ng/hàm của h/số f(x) = cosx trên (-∞; +∞)
Định lý1: (SGK/T93)
C/M.
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG
- Từ định lý 1 và 2 (SGK) nêu K/n họ nguyên hàm của h/số và kí hiệu.
- Làm rõ mối liên hệ giữa vi phân của hàm số và nguyên hàm của nó trong biểu thức. (Giáo viên đề cập đến thuật ngữ: tích phân không xác định cho học sinh)
HĐTP4: Vận dụng định lý
- H/s làm vd2 (SGK): Giáo viên có thể hướng dẫn học sinh nếu cần, chính xác hoá lời giải của học sinh và ghi bảng.
HĐ2: Tính chất của nguyên hàm.
HĐTP1: Mối liên hệ giữa nguyên hàm và đạo hàm:
- Từ đ/n dễ dàng giúp học sinh suy ra tính chất 1 (SGK)
- Minh hoạ tính chất bằng vd và y/c h/s thực hiện.
HĐTP2: Tính chất 2 (SGK)
- Yêu cầu học sinh phát biểu tính chất và nhấn mạnh cho học sinh hằng số K+0
- HD học sinh chứng minh tính chất.
HĐTP3: Tính chất 3
- Y/cầu học sinh phát biểu tính chất.
- Thực hiện HĐ4 (SGK)
(giáo viên hướng dẫn học sinh nếu cần)
- Chú ý
- H/s thực hiện vd
- Phát biểu tính chất 1 (SGK)
- H/s thực hiện vd
- Phát biểu tính chất.
- Phát biểu dựa vào SGK.
- Thực hiện
Định lý 2: (SGK/T94)
C/M (SGK)
, CÎR
Là họ tất cả các nguyên hàm của f(x) trên K.
*Chú ý:
f(x)dx là vi phân của ng/hàm F(x) của f(x)dx vì dF(x) = F’(x)dx = f(x)dx.
Ví dụ 2:
2. Tính chất của nguyên hàm
Tính chất 1:
Ví dụ 3:
∫(cosx)’dx = ∫(-sin)dx = cosx + C
Tính chất2:
k: hằng số khác 0
C/M: (SGK)
Tính chất 3:
C/M: Chứng minh của học sinh được chính xác hoá.
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG
- Minh hoạ tính chất bằng vd4 SGK và yêu cầu học sinh thực hiện.
- Nhận xét, chính xác hoá và ghi bảng.
HĐ3: Sự tồn tại của nguyên hàm
- Giáo viên cho học sinh phát biểu và thừa nhận định lý 3.
- Minh hoạ định lý bằng 1 vài vd 5 SGK (y/c học sinh giải thích)
HĐ4: Bảng nguyên hàm
- Cho học sinh thực hiện hoạt động 5 SGK.
- Treo bảng phụ và y/c học sinh kiểm tra lại kquả vừa thực hiện.
- Từ đó đưa ra bảng kquả các nguyên hàm của 1 số hàm số thường gặp.
- Luyện tập cho học sinh bằng cách yêu cầu học sinh làm vd6 SGK và 1 số vd khác gv giao cho.
- HD h/s vận dụng linh hoạt bảng hơn bằng cách đưa vào các hàm số hợp.
- Học sinh thực hiện
Vd: 
Với x Î (0; +∞)
Ta có:
=
=
- Phát biểu định lý
- Thực hiện vd5
- Thực hiện HĐ5
- Kiểm tra lại kquả
- Chú ý bảng kquả
- Thực hiện vd 6
Ví dụ 4: Tìm nguyên hàm của hàm số f(x)=3sinx + 2/x trên khoảng (0; +∞)
Giải:
Lời giải của học sinh đã chính xác hoá.
3. Sự tồn tại của nguyên hàm 
Định lý 3: (SGK/T95)
Ví dụ 5: (SGK/T96)
4. Bảng nguyên hàm của một số hàm số thường gặp:
Bảng nguyên hàm:
(SGK/T97)
Ví dụ 6: Tính
a/ trên (0; +∞)
b/ trên (-∞; +∞)
c/ 
d/ 
Tiết 2
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG
HĐ5: Phương pháp đổi biến số
HĐTP1: Phương pháp
- Yêu cầu h/s làm hđộng 6 SGK.
- Những bthức theo u sẽ tính được dễ dàng nguyên hàm
- Gv đặt vđề cho học sinh là: và
- HD học sinh giải quyết vấn đề bằng định lý 1(SGKT98)
- HD h/s chứng minh định lý 
- Từ định lý y/c học sinh rút ra hệ quả và phát biểu.
- Làm rõ định lý bằng vd7 (SGK) (yêu cầu học sinh thực hiện)
- Lưu ý học sinh trở lại biến ban đầu nếu tính nguyên hàm theo biến mới.
HĐTP2: Rèn luyện tính nguyên hàm hàm số bằng p2 đổi biến số.
- Nêu vd và y/c học sinh thực hiện. HD học sinh trả lời bằng 1 số câu hỏi 
H1: Đặt u như thế nào?
H2: Viết tích phân bất định ban đầu thẽo?
H3: Tính?
H4: Đổi biến u theo x
- Nhận xét và chính xác hoá lời giải.
- Thực hiện
a/ (x-1)10dx chuyển thành u10du.
b/ chuyển thành: tdt.
 - Phát biểu định lý 1 (SGK/T98)
- Phát biểu hệ quả
- Thực hiện vd7 
vì 
Nên: 
- Thực hiện vd:
Đặt u = x + 1Þdu=dx
Khi đó: 
=
II. Phương pháp tính nguyên hàm 
1. Phương pháp đổi biến số
Định lý 1: (SGK/ T98)
C/M (SGK)
Hệ quả: (SGK/ T98)
 (a ≠0)
Ví dụ 7: Tính 
* Chú ý: (SGK/ T98)
Ví dụ 8 (SGK)
Tính 
Giải:
Lời giải học sinh được chính xác hoá
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG
- Nêu vd9; yêu cầu học sinh thực hiện. GV có thể hướng dẫn thông qua 1 số câu hỏi:
H1: Đổi biến như thế nào?
H2: Viết tích phân ban đầu theo u
H3: Tính dựa vào bảng nguyên hàm.
- Từ những vd trên và trên cơ sở của phương pháp đổi biến số y/cầu học sinh lập bảng nguyên hàm các hàm số cấp ở dạng hàm số hợp: dạng: f(u) với u = u (x)
- Học sinh thực hiện
a/ Đặt u = 2x + 1
... I=e2x+1+C
b/ Đặt u = x5 + 1
... J=-cos(x5+1)+C
- Học sinh thực hiện
Ví dụ 8: Tính 
a/ 
b/ 
Giải: Lời giải học sinh được chính xác hoá .
- Bảng nguyên hàm 1 số hàm số sơ cấp ở dạng hàm số hợp.
(bảng phụ)
Tiết 3 
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG
HĐ6: Phương pháp nguyên hàm từng phần.
HĐTP1: Hình thành phương pháp.
- Yêu cầu và hướng dẫn học sinh thực hiện hoạt động 7 SGK.
- Từ hoạt động 7 SGK hướng dẫn học sinh nhận xét và rút ra kết luận thay u=x và v=cosx.
- Từ đó yêu cầu học sinh phát biểu và chứng minh định lý
- Lưu ý cho học sinh cách viết biểu thức của định lý:
 v’(x) dx = dv
u’ (x) dx = du
HĐTP2: Rèn luyện tính nguyên hàm hàm số bằng phương pháp nguyên hàm từng phần.
- Nêu vd 9 SGK yêu cầu học sinh thực hiện. GV có thể hướng dẫn thông qua các câu hỏi gợi ý:
Đặt u = ?
Suy ra du = ?, dv = ?
Áp dụng công thức tính
- Nhận xét , đánh giá kết quả và chính xác hoá lời giải , ghi bảng ngắn gọn và chính xác lời giải.
- Từ vd9: yêu cầu học sinh thực hiện HĐ8 SGK 
- Nêu 1 vài ví dụ yêu cầu học sinh thực hiện tính khi sử dụng phương pháp nguyeê hàm từng phần ở mức độ linh hoạt hơn.
- GV hướng dẫn học sinh thực hiện tính (lặp lại tính nguyên hàm 1 số lần )
- Nhận xét và chính xác hoá kết quả.
HĐ7: Củng cố:
- Yêu cầu học sinh nhắc lại :
+ Định nghĩa nguyên hàm hàm số 
+ Phương pháp tính nguyên hàm bằng cách đảo biến số và phương pháp nguyên hàm từng phần .
- Thực hiện:
∫(xcosx)’dx=xcos +C1
∫cosxdx =sinx+C2
Do đó: 
∫xsinxdx=-xcosx+sinx+C (C=-C1+C2)
- Phát biểu định lý
- Chứng minh định lý:
- Thực hiện vídụ:
a/ Đặt: 
b/ Đặt 
c/ Đặt 
Đặt 
Đặt 
- Nhắc lại theo yêu cầu của giáo viên. 
 2. Phương pháp tính nguyên hàm từng phần:
Định lý 2: (SGK/T99)
Chứng minh:
*Chú ý: 
Ví dụ 9: Tính 
a/ 
b/ 
c/ 
Giải:
Lời giải học sinh đã chính xác hoá.
Ví dụ 10: Tính 
Giải:
Lời giải của học sinh đã chính xác hoá.
4. Hướng dẫn học bài ở nhà:
- Nắm vững các cách tính nguyên hàm của hàm số 
- Làm các bài tập SGK và SBT.
IV. Rút kinh nghiệm sau tiết dạy:

Tài liệu đính kèm:

  • doc§1. Nguyen ham.doc