I. Mục tiêu.
1. Kiến thức: - Củng cố cách giải các dạng bài: xét chiều biến thiên, tìm tham số để hàm số thoả mãn điều kiện nào đó, chứng minh bất đẳng thức.
- Củng cố cách giải các dạng bài: xét chiều biến thiên, tìm tham số để hàm số thoả mãn điều kiện nào đó, chứng minh bất đẳng thức.
2. Kĩ năng: rèn kỹ năng xét chiều biến thiên, chứng minh bất đẳng thức, chứng minh tính chất nghiệm của phương trình.
3. Tư duy, thái độ: tính chính xác, óc phân tích, tổng hợp, lập luận chặt chẽ.
II. Thiết bị.
1. GV: giáo án, hệ thống bài tập tự chọn, bảng phấn.
2. HS: bài tập trong SBT, vở ghi, vở bài tập, bút.
Ngày soan:. Ngày dạy:.. tuần 1. ứng dụng của đạo hàm. Sự đồng biến nghịch biến của hàm số. Mục tiêu. 1. Kiến thức: - Củng cố cách giải các dạng bài: xét chiều biến thiên, tìm tham số để hàm số thoả mãn điều kiện nào đó, chứng minh bất đẳng thức. - Củng cố cách giải các dạng bài: xét chiều biến thiên, tìm tham số để hàm số thoả mãn điều kiện nào đó, chứng minh bất đẳng thức.. Kĩ năng: rèn kỹ năng xét chiều biến thiên, chứng minh bất đẳng thức, chứng minh tính chất nghiệm của phương trình. Tư duy, thái độ: tính chính xác, óc phân tích, tổng hợp, lập luận chặt chẽ. Thiết bị. 1. GV: giáo án, hệ thống bài tập tự chọn, bảng phấn. HS: bài tập trong SBT, vở ghi, vở bài tập, bút. Tiến trình. ổn định tổ chức lớp. Kiểm tra bài cũ. Bài mới. Hoạt động của GV Hoạt động của HS Ghi bảng GV nêu vấn đề: bài 1. Xét sự biến thiên của các hàm số sau?(các hàm số GV ghi lên bảng). thông qua bài 1 rèn kĩ năng tính chính xác đạo hàm và xét chiều biến thiên cho HS. bài 2. nêu phương pháp giải bài 2? Nêu điều kiện để hàm số nghịch biến trên ? Tương tự hàm số đồng biến trên mỗi khoảng xác định khi nào? giải các bài toán dựa vào kiến thức về tính đồng biến nghịch biến. HS lên bảng trình bày lời giải của mình, HS khác nhận xét, bổ sung. xét sự biến thiên của hàm số trên các tập mà bài toán yêu cầu? Bài 1. xét sự biến thiên của các hàm số sau? Bài 2. Chứng minh rằng Hàm số đồng biến trên mỗi khoảng xác định của nó. hàm số đồng biến trên [3; +∞). hàm số y = x + sin2x đồng biến trên ? Giải. Ta có y’ = 1 – sin2x; y’ = 0 úsin2x = 1 ú x= . Vì hàm số liên tục trên mỗi đoạn và có đạo hàm y’>0 với nên hàm số đồng biến trên , vậy hàm số đồng biến trên . Bài 3. Với giá trị nào của m thì hàm số nghịch biến trên R? hàm số đồng biến trên mỗi khoảng xác định của nó? Giải b. C1. nếu m = 0 ta có y = x + 2 đồng biến trên . Vậy m = 0 thoả mãn. Nếu m ≠ 0. Ta có D = \{1} đặt g(x) = (x-1)2 – m hàm số đồng biến trên các khoảng xác định nếu y’ ≥ 0 với mọi x ≠ 1 Và y’ = 0 tại hữu hạn điểm. Ta thấy g(x) = 0 có tối đa 2 nghiệm nên hàm số đồng biến trên mỗi khoảng xác định nếu ú Vậy m ≤ 0 thì hàm số đồng biến trên các khoảng xác định. Cách khác. xét phương trình y’ = 0 và các trường hợp xảy ra của D GV hàm số lấy giá trị không đổi trên R khi nào? Nêu cách tìm f(x)? để chứng minh phương trình có duy nhất nghiệm có những cách nào? HS cần chỉ ra được f’(x) = 0 Nếu f(x) không đổi thì giá trị của f(x) bằng giá trị hàm số tại một điểm bất kỳ. HS chỉ ra phương pháp theo ý hiểu. HS chứng minh bất đẳng thức như đã biết. Bài 4. Cho hàm số f(x)= 2- sin2x–sin2(a+x)– 2cosacosxcos(a+x) tính f’(x)? chứng minh rằng f(x) lấy giá trị không đổi trên R? Tính giá trị không đổi đó? Gợi ý – hướng dẫn. f’(x) = - sin2x – sin2(a+x) + 2sinxcos(a+x)cosa + 2cosacosxsin(a+x) = 0. b. từ a ta có f(x) không đổi trên R. Với x = 0 ta có f(0) = 2 – sin2a – 2cos2a = sin2a. Bài 5. Chứng minh rằng phương trình x – cosx = 0 có duy nhất một nghiệm? phương trình có một nghiệm duy nhất? Gợi ý – hướng dẫn. Hàm số liên tục trên R và đồng biến trên R nên phương trình có duy nhất một nghiệm. TXĐ: D = [2; +Ơ). Hàm số đồng biến trên [2; +Ơ) nên từ bảng biến thiên ta có phương trình có duy nhất nghiệm. Bài 6.chứng minh các bất đẳng thức sau? 2sinx + tanx > 3x với 22sinx + 2tanx > 2.23x/2 với Gợi ý. a. xét hàm số f(x) = 2sinx + tanx - 3x trên . Ta có f(x) đồng biến trên nên ta có f(x) > f(0) với b. áp dụng bất đẳng thức cosi cho 2 số 22sinx , 2tanx ta có Củng cố – hướng dẫn học ở nhà. GV nhấn lại tính chất của hàm số đơn điệu trên một khoảng (a; b) để vận dụng trong bài toán chứng minh bất đẳng thức hoặc chứng minh nghiệm của phương trình. Bài về nhà. Xét chiều biến thiên của hàm số Y = | x2 – 3x +2|. Y = Cho hàm số Tìm m để hàm số đồng biến trên R. Tìm m để hàm số nghịch biến trên (1;+Ơ). Lưu ý khi sử dụng giáo án. ............................................................................................................................................................................................................................................................................................................................................................................................. Ngày soan:. Ngày dạy:.. Tuần 2. ứng dụng của đạo hàm. Cực trị hàm số. Mục tiêu. Kiến thức: củng cố các quy tắc tìm cực trị của hàm số, bảng biến thiên của hàm số. kĩ năng: rèn kĩ năng xét sự biến thiên; học sinh vận dụng thành thạo các quy tắc tìm cực trị vào giải quyết tốt bài toán tìm cực trị hàm số và các bài toán có tham số. Tư duy - thái độ: chủ động, sáng tạo, tư duy logíc. Thiết bị. GV: giáo án, hệ thống bài tập bổ trợ. HS: kiến thức cũ về sự biến thiên, các quy tắc tìm cực trị. Tiến trình. ổn định tổ chức. Kiểm tra bài cũ. GV: nêu các quy tắc tìm cực trị hàm số? HS: trả lời tại chỗ. Bài mới. Hoạt động GV Hoạt động HS Ghi bảng GV: nêu vấn đề Gợi ý 7: nêu quy tắc áp dụng trong ý 7? Tìm nghiệm của phương trình trong [0; p]? hỏi: hàm số có cực trị tại x = 1 khi nào? cần lưu ý HS khi tìm ra giá trị của m phái kiểm tra lại. GV kiểm tra kĩ năng của các HS. hàm só không có cực trị khi nào? HS: giải quyết các bài tập, chú ý kĩ năng diễn đạt. ý 7: HS chỉ ra được quy tắc 2; các nghiệm trong [0; p] và so sánh để tìm ra cực trị. HS cần chỉ ra được: x = 1 là một nghiệm của phương trình y’ = 0. HS giải bài toán độc lập không theo nhóm. khi phương trình y’ = 0 vô nghiệm. Bài 1. Tìm điểm cực trị của các hàm số sau: 1. y = 2x3 – 3x2 + 4 2. y = 3. 4. 5. y = sin2x 6. 7. 8. Hướng dẫn 7. Ta có y’ = 2sinxcosx + sinx trong [0; p], y’= 0 úsinx = 0 hoặc cosx = -úx= 0; x = p; x= mặt khác y’’ = 2cos2x +cosx nên ta có y”(0) > 0 nên x = 0 là điểm cực tiểu. tương tự y”(p) >0 nên x = p là điểm cực tiểu. y’’() <0 nên x = là điểm cực đại. Bài 2. Xác định m để hàm số có cực trị tại x = 1. Khi đó hàm số đạt cực tiểu hay cực đại tại x = 1? Hướng dẫn: , hàm số có cực trị tại x = 1 suy ra m = 25/3. Bài 3. Xác định m để hàm số không có cực trị? Hướng dẫn. nếu m = 1 thì hàm số không có cực trị. nếu m 1thì y’ = 0 vô nghiệm hàm số sẽ không có cực trị. Hoạt động GV Hoạt động HS Ghi bảng GV chữa bài tập về nhà theo yêu cầu của HS (nếu có). bài tập mới: GV gợi ý: gọi x là hoanh độ cực trị, nêu cách tìm tungđộ của cực trị? ( y = ) Hai cực trị nằm về hai phía của Oy khi toạ độ của chúng phải thoả mãn điều kiện gì? Tương tự cho trường hợp ii và iii? Trao đổi với GV về bài tập về nhà. HS giải các ý của bài tập theo gợi ya của GV. HS nêu theo ya hiểu. HS cần chỉ ra được y1.y2 < 0. Tương tự cho các trường hợp còn lại. Bài 1. Cho hàm số (Cm) Chứng minh rằng (Cm) có cực đại, cực tiểu với mọi số thực m? Tìm m để giá trị cực đại, cực tiểu trái dấu? Viết phương trình đường thẳng đi qua 2 điểm cực trị của (Cm)? Tìm quỹ tích trung điểm của đoạn thẳng nối 2 cực trị? tìm m để hai điểm cực trị của (Cm): nằm về cùng một phía của trục Oy? Nằm về hai phía của trục Ox? đối xứng với nhau qua đừơng thẳng y = x? Hướng dẫn: gọi x0 là hoành độ điểm cực trị ta có e. iii. gọi I là trung điểm của đoạn thảng nối 2 điểm cực trị. Hai điểm cực trị đối xứng nhau qua y = x khi I nằm trên y = x và I là giao của y = x với đường thẳng đi qua hai điểm cực trị. ta có toạ độ điểm I(-m – 1; -m – 1) Củng cố – hướng dẫn học ở nhà. GV: chốt lại điều kiện để hàm số có n cực trị; khi nào dùng quy tắc 2 tìm cực trị là thuận lợi. Bài tập về nhà: Bài 1. Tìm m để hàm số đạt cực đại tại x = 2? Bài 2. Chứng minh rằng hàm số luôn có 1 cực đại và một cực tiểu với mọi m? Bài 3. Tìm m để hàm số y = 2x3 + mx2 + 12x -13 có 2 cực trị? Bài 4 . Tìm a để hàm số y = x4 + 8ax3 +3(1+2a)x2 – 4 Chỉ có một cực tiểu mà không có cực đại? Có ba cực trị? Lưu ý khi sử dụng giáo án. *********************************************************** Ngày soan:. Ngày dạy:.. Tuần 3. ứng dụng của đạo hàm. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Soạn ngày: 06/09/08. Mục tiêu. Kiến thức: củng cố các bước tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng đạo hàm; các bước lập bảng biến thiên của hàm số. Kĩ năng: rèn kĩ năng tìm GTLN, GTNN của hàm số trên một đoạn, trên tập bất kì Tư duy, thái độ: tích cực, tự giác trong quá trình lĩnh hội kiến thức; biết quy lạ về quen; biết đánh giá bài làm của người khác. Thiết bị. HS: ngoài vở ghi, bút, SGK còn có: kiến thức cũ về GTLN, GTNN, bảng biến thiên, hàm số lượng giác. GV: ngoài giáo án, bảng, phấn cần trang bị trước cho HS hệ thống bài tập để HS nghiên cứu. Cụ thể: Bài 1. Tìm GTLN, GTNN (nếu có) của các hàm số sau? 1. trên [0; 1]. 2. trong [0; 1] 3. y = sin2x – 2sinx + cosx + x trong [- p;p] 4. 5. y = sin3x + cos3x Bài 2. Gọi y là nghiệm lớn của phương trình x2 + 2(a – b – 3)x + a – b – 13 = 0 tìm maxy với a ≥ 2, b≤ 1? Tiến trình. ổn định tổ chức lớp. Kiểm tra bài cũ. GV: kiểm tra quá trình chuẩn bị bài của HS ở nhà thông qua cán sự lớp. Bài mới. Hoạt động GV Hoạt động HS Ghi bảng GV chữa bài tập theo yêu cầu của HS Nêu cách giải 5? GV hướng dẫn HS nên đưa các hàm số lượng giác về các hàm đa thức để giải. GV phân túch bước giải của bài toán? Có nhận xét gì về nghiệm tìm được? HS nêu yêu cầu chữa bài tập. HS chữa các bài tập. Nêu phương pháp giải. Chứng minh pt có nghiệm; xác định nghiệm và phân tích đặc điểm của nghiệm. Bài 1. 3. y = sin2x – 2sinx + cosx + x trong [- p;p] ta có hàm số xác định và liên tục trên [- p;p] y’ = 2sinxcosx- 2cosx – sinx + 1 = (sinx -1)(2cosx -1) Trong [- p;p] ta có y’ = 0 ú Kquả: maxy = p -1, minxy = -1 –p. 5. ta có y = sin3x + cos3x = (sinx + cosx)(1 – sinxcosx) đặt t = sinx + cosx, |t| khi đó ta có Sinxcosx = và với |t| Hàm số liên tục trên và y’=0út = 1 hoặc t = -1. Kquả: maxy = 1 , miny = -1. Bài 2. Gọi y là nghiệm lớn của phương trình x2 + 2(a – b – 3)x + a – b – 13 = 0 tìm maxy với a ≥ 2, b≤ 1? Hướng đẫn. Có D’ = (a – b – 3)2-(a – b – 3) +10 > 0 với mọi a, b. khi đó nghiệm lớn của pt là đặt t = ta có t ≥ -2 và Dễ chứng minh được hàm số nghịch biến trên ( - ∞; -2] nên maxy = y(-2) = 2. Củng cố – hướng dẫn học ở nhà. GV lưu ý cho HS các bước giải của bài toán; cách chuyển từ hàm lượng giác về hàm đa thức với điều kiện của ẩn phụ. Hướng dẫn học ở nhà: nghiên cứu lại các quy tắc tìm cực trị, quy tắc xét sự biến thiên của hàm số từ đó tìm giá trị lớn nhất, nhỏ nhất của hàm số. Lưu ý khi sử dụng giáo án. .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... *************************************************************************
Tài liệu đính kèm: