Giáo án: Cấp số nhân (tiết 54+55) lớp 11 nâng cao

Giáo án: Cấp số nhân (tiết 54+55) lớp 11 nâng cao

CẤP SỐ NHÂN (TIẾT 54+55)

LỚP 11 NÂNG CAO

A. MỤC TIÊU:

 1. Về kiến thức : Giúp học sinh :

- Nắm vững khái niệm cấp số nhân ;

- Nắm được tính chất đơn giản về ba số hạng liên tiếp của một cấp số nhân ;

- Nắm vững công thức xác định số hạng tổng quát và công thức tính tổng n số hạng đầu tiên của một cấp số nhân .

 2. Về kĩ năng : Giúp học sinh :

 - Biết dựa vào định nghĩa để nhận biết một cấp số nhân ;

 - Biết cách tìm số hạng tổng quát và cách tính tổng n số hạng đầu tiên của một cấp số nhân trong các trường hợp không phức tạp ;

 - Biết vận dụng các kết quả lý thuyết đã học để giải quyết các bài toán đơn giản liên quan đến cấp số

 nhân ở các môn học khác , cũng như trong thực tế cuộc sống .

 

doc 3 trang Người đăng ngochoa2017 Lượt xem 2757Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án: Cấp số nhân (tiết 54+55) lớp 11 nâng cao", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CẤP SỐ NHÂN (TIẾT 54+55)
LỚP 11 NÂNG CAO
A. MỤC TIÊU: 
 1. Về kiến thức : Giúp học sinh :
- Nắm vững khái niệm cấp số nhân ;
- Nắm được tính chất đơn giản về ba số hạng liên tiếp của một cấp số nhân ; 
- Nắm vững công thức xác định số hạng tổng quát và công thức tính tổng n số hạng đầu tiên của một cấp số nhân .
 2. Về kĩ năng : Giúp học sinh :
 - Biết dựa vào định nghĩa để nhận biết một cấp số nhân ;
 - Biết cách tìm số hạng tổng quát và cách tính tổng n số hạng đầu tiên của một cấp số nhân trong các trường hợp không phức tạp ;
 - Biết vận dụng các kết quả lý thuyết đã học để giải quyết các bài toán đơn giản liên quan đến cấp số
 nhân ở các môn học khác , cũng như trong thực tế cuộc sống .
 3. Về tư duy và thái độ :
 Biết khái quát hoá , tương tự . Tích cực hoạt động, trả lời câu hỏi .
B. CHUẨN BỊ CỦA THẦY & TRÒ:
 1. Giáo viên : SGK , Giáo án . Cần chuẩn bị trước ở nhà bảng tóm tắt nội dung của bài toán mở đầu và
 bài toán nêu trong mục Đố vui . 
 2. Học sinh : Học thuộc bài cũ .Xem trước bài CSN , SGK , dụng cụ học tập .
C. PHƯƠNG PHÁP DẠY HỌC: Phát hiện và giải quyết vấn đề .
D. TIẾN HÀNH BÀI DẠY:
1. Ổn định lớp 
2. Kiểm tra bài cũ + Định nghĩa cấp số cộng ?
 + Một CSC có 11 số hạng .Tổng các số hạng là 176. Hiệu giữa số 
hạng cuối và số hạng đầu 30 . Tìm CSC đó ?
3. Bài mới
HOẠT ĐỘNG CỦA GIÁO VIÊN
HOẠT ĐỘNG CỦA HỌC SINH
GHI BẢNG
GV treo bảng phụ tóm tắt nội dung của bài toán mở đầu :
...Giả sử có 1 người gửi 10 triệu đồng với kỳ hạn một tháng vào ngân hàng nói trên và giả sử lãi suất của loại kỳ hạn này là 0,04%.
a) Hỏi nếu 6 tháng sau , kể từ ngày gửi , người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi ) là bao nhiêu ?
b) Cùng câu hỏi như trên , với thời điểm rút tiền là 1 năm kể từ ngày gửi ?
* Gọi HS làm câu a) . Sau đó gọi HS khác trả lời câu b) .
 Với mỗi số nguyên dương n , ký hiệu 
u n là số tiền người đó rút được (gồm cả vốn lẫn lãi) sau n tháng kể từ ngày gửi .
Ta có : 
 u 1 = 10 7 + 10 7 .0,004 = 10 7 .1,004 ;
 u 2 = u 1 + u 1 .0,004 = u 1 .1,004 ; 
 u 3 = u 2 + u 2.0,004 = u 2 .1,004 ; ...
 u n = u n - 1 + u n - 1.0,004 = u n -1.1,004 
Tổng quát , ta có :
 u n= u n -1 + u n - 1 .0,004 = u n - 1 . 1,004 
a) Vậy sau 6 tháng người đó rút được 
 u 6 = ? u 5 .1,004 
b) Sau 1 năm người đó rút được : 
 u 12 = ? u 11 .1,004
Bài toán mở đầu:
+ Với mỗi số nguyên dương n ,ký 
hiệu u n là số tiền người đó rút được (gồm cả vốn lẫn lãi) sau n tháng kể từ ngày gửi .Ta có : 
 u 1 = 10 7 .1,004 ;
 u 2 = u 1 .1,004 ; 
 u 3 = u 2 .1,004 ; ............
 u n = u n - 1.1,004 .
Tổng quát , ta có :
 u n= u n - 1 . 1,004 
* Nhận xét tính chất dãy số (u n) nói trên ? 
 + Kể từ số hạng thứ hai , mỗi số hạng đều bằng tích của số hạng đứng ngay trước nó và 1,004 .
* Tổng quát dãy số (u n) được gọi là cấp số nhân khi nào ? 
(u n) là cấp số nhân 
1.Định nghĩa:
(u n) là cấp số nhân 
 ( q là số không đổi , gọi là công bội của CSN )
Ví dụ 1: SGK Tr 116
H1: Trong các dãy số sau , dãy nào là cấp số nhân ? Vì sao?
a) 4 ; 6 ; 9 ; 13,5 .
b) -1,5 ; 3 ; -6 ; -12 ; 24 ; - 48 ; 96 ; -192 
c) 7 ; 0 ; 0 ; 0 ; 0 ; 0 .
Ví dụ 2: SGK Tr 116 .
* Gọi từng HS đứng tại chỗ với mỗi VD
Từ VD1b) sau đó là 1a) cho học sinh nhận xét kể từ số hạng thứ 
hai , bình phương của mỗi số hạng (trừ số hạng cuối đ/v CSN hữu hạn) liên hệ thế nào với hai số hạng kề nó trong dãy ?
* Hãy phát biểu tính chất nêu
 trên ?
C/m:Gọi q là công bội của CSN 
(u n) .Xét 2 trường hợp :
+ q = 0 : hiển nhiên .
 + q 0 : Viết u k qua số hạng đứng trước và ngay sau nó ?
H2: Có hay không CSN (u n) mà u 99= -99 và u 101 = 101 ?
Ví dụ 3: SGK Tr 118 .
* PP c/minh dãy số là CSN ? Áp dụng ?
* Từ bài toán mở đầu , biểu diễn các số hạng u n () theo u 1 và công bội q = 1,004 ?
* Tổng quát CSN (u n) có số hạng đầu u 1 và công bội q 0 có số hạng tổng quát 
u n = ? 
Ví dụ 4: Từ bài toán mở đầu , tìm u 6 và u 12 ?
H3 : SGK Tr 119 .
*Gọi HS đứng tại chỗ giải ( có thể gợi ý xét sự tương đồng giữa BT này và BT mở đầu để làm ) ?
* CSN (u n) có số hạng đầu u 1 và công bội q .Mỗi số nguyên dương n , gọi S n là tổng n số hạng đầu tiên của nó . Tính S n 
(S n = u 1+u 2+.....+ u n ) ?
Khi q = 1 , khi q 1 ?
Ví dụ 5: CSN (u n) có u 3 = 24 , 
u 4 = 48 . Tính S 5 ?
* Tính S 5 ta phải tìm gì ?
* ĐỐ VUI: Giáo vien treo bảng phụ đã chuẩn bị sẵn lên bảng .
* Đây là CSN có u 1 và q là bao nhiêu ?
a) Số tiền mà nhà tỉ phú phải trả cho nhà toán học sau 30 ngày ?
b) Số tiền mà nhà toán học đã bán cho nhà tỉ phú sau 30 ngày ?
c) Sau cuộc mua - bán nhà tỉ phú
"lãi" ?
a) Dãy số là cấp số nhân ; vì kể từ số hạng thứ hai , mỗi số hạng đều bằng số hạng đứng ngay trước nó nhân với 1,5 .
b) không là cấp số nhân .
c) là cấp số nhân , công bội q = 0 .
+ Đối với CSN 1b) 
+ Đối với CSN 1a)
+ Nếu (u n) CSN 
 thì u k2 = u k - 1 .u k +1 , 
+ u k = u k - 1 . q ()
 ()
Nhân các vế tương ứng , ta có (đpcm)
+ Không tồn tại , vì nếu ngược lại ta sẽ có : u 2100= u 99. u 101= - 99 .101 < 0 
+ vn = q.vn -1 , 
+ vn = u n - = 3u n - 1 - 1 - 
 = 3vn -1 , 
 + u 1 = 10 7 .1,004 ;
 u 2 = u 1 .1,004 ; 
 u 3 = u 2 .1,004 = u 1 .(1,004)2 ; ...
 u n = u n - 1.1,004 
 = u 1 . (1,004) n - 1 ,
+ u n = u 1 . ( q ) n - 1 ,
+ u n= 10 7 .1,004.(1,004) n - 1 
 = 10 7 .(1,004) n , 
+ u n = 3.10 6 .(1 + 0,02) n 
 = 3.10 6 . (1,002) n .
+ Khi q = 1 thì u n= u 1 và S n= n.u 1.
+ Khi q 1 :
 q S n = u 1+ u 2+ . . . + u n+ u n + 1 .
 S n - q S n = u 1 - u n + 1 = u 1(1 - q n ) 
 (1 - q) S n = u 1 (1 - q n ) với q 1 Suy ra đpcm .
+ Tìm u 1 và q .
 u 1 = u 4 : u 3 = 2 ; 24 = u 3= u 1 .2 2 u 1 = 6
 S 5 = 186 .
+ Gọi u n là số tiền mà nhà tỉ phú phải trả cho nhà toán học ở ngày thứ n .Ta có u 1 = 1 và q = 2 .
a) S 30 = (đ)
b) Số tiền mà nhà toán học đã bán cho nhà tỉ phú sau 30 ngày : 
 10.106 .30 = 300.000.000 (đồng) .
c) Sau cuộc mua - bán nhà tỉ phú "lãi" 
 300.000.000 - 1.073.741.823 
 = - 773.741.823 (đ)
2. Tính chất :
Định lý 1:
Nếu (u n) CSN
thì u k2 = u k - 1 .u k +1 , 
3. Số hạng tổng quát:
 Từ bài toán mở đầu :
 u 1 = 10 7 .1,004 ;
 u 2 = u 1 .1,004 ; 
 u 3 = u 1 .(1,004)2 ; ...
 u n = u 1 . (1,004) n - 1 ,
+ u n = u 1 . ( q ) n - 1 ,
Định lý 2 : SGK Tr 118 .
Nếu CSN (u n) có số hạng đầu u 1 và công bội q 0 thì có số hạng tổng quát :
 u n = u 1 . ( q ) n - 1 , 
4.Tổng n số hạng đầu tiên 
của một CSN
Nếu (u n) là CSN có số hạng đầu 
u 1 với công bội q 1 thì S n là :
 S n = , q 1 
4.CŨNG CỐ : 
 + Lý thuyết cũng cố từng phần trong quá trình dạy học , GV có thể cũng cố lại nhanh theo 
dàn bài có sẵn trên bảng .
 + Bài tập: 
 1)Tìm công bội q và tổng các số hạng của CSN hữu hạn , biết số hạng đầu 
u 1 = 2 và số hạng cuối u 11 = 64 ? 
 2) Bài 31 ; 32 SGK Tr 121 .
5. HƯỚNG TẬP : 
 Học thuộc bài CSN , làm các bài tập SGK 33 - 43 Tr 121,122 .

Tài liệu đính kèm:

  • docMINH HOA PHAN BAI TAP ON CHUONG I BANG SKETCHPAD.doc