Ðề thi tuyển sinh đại học khối b năm 2010 môn thi : Toán học

Ðề thi tuyển sinh đại học khối b năm 2010 môn thi : Toán học

Câu IV (1,0 điểm). Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = a, góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60o. Gọi G là trọng tâm tam giác A’BC. Tính thể tích khối lăng trụ đã cho và tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a.

doc 1 trang Người đăng haha99 Lượt xem 838Lượt tải 0 Download
Bạn đang xem tài liệu "Ðề thi tuyển sinh đại học khối b năm 2010 môn thi : Toán học", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ÐỀ THI TUYỂN SINH ĐẠI HỌC KHỐI B NĂM 2010
Môn thi : TOÁN
PHẦN CHUNG CHO TẤT CẢ THÍ SINH
Câu I (2 điểm). Cho haøm số y = đ
1.	Khaûo saùt söï bieán thieân vaø veõ ñoà thò (C) cuûa haøm soá đã cho.
2.	Tìm m để đường thẳng y = -2x + m cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng (O là gốc tọa độ).
Caâu II (2,0 ñieåm)
1.	Giải phương trình (sin 2x + cos 2x) cosx + 2cos2x – sin x = 0
2.	Giải phương trình (x Î R).
Câu III (1,0 điểm). Tính tích phân I = 
Câu IV (1,0 điểm). Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = a, góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 600. Gọi G là trọng tâm tam giác A’BC. Tính thể tích khối lăng trụ đã cho và tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a.
Câu V (1,0 điểm). Cho các số thực không âm a, b, c thỏa mãn: a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức M=3(a2b2+b2c2+c2a2) + 3(ab + bc + ca) + .
PHẦN RIÊNG (3,0 điểm): 
Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A.	Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1.	Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại A, có đỉnh C(-4; 1), phân giác trong góc A có phương trình x + y – 5 = 0. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC bằng 24 và đỉnh A có hoành độ dương.
2.	Trong không gian tọa độ Oxyz, cho các điểm A (1; 0; 0), B (0; b; 0), C (0; 0; c), trong đó b, c dương và mặt phẳng (P): y – z + 1 = 0. Xác định b và c, biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng .
Câu VII.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn: .
B. Theo Chương trình Nâng Cao
Câu VI.b (2,0 điểm). 
1.	Trong mặt phẳng tọa độ Oxy , cho điểm A(2; ) và elip (E): . Gọi F1 và F2 là các tiêu điểm của (E) (F1 có hoành độ âm); M là giao điểm có tung độ dương của đường thẳng AF1 với (E); N là điểm đối xứng của F2 qua M. Viết phương trình đường tròn ngoại tiếp tam giác ANF2.
2.	Trong không gian tọa độ Oxyz, cho đường thẳng D: . Xác định tọa độ điểm M trên trục hoành sao cho khoảng cách từ M đến D bằng OM.
Câu VII.b (1,0 điểm)
	Gỉai hệ phương trình : (x, y Î R)

Tài liệu đính kèm:

  • docDetoan_KhoiB.doc