PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)
Câu I (2 điểm) Cho hàm số y=f(x)=8x4-9x2+1
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình
www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỂ THI THỬ ĐẠI HỌC, CAO ĐẲNG THÀNH PHỐ ĐÀ NẴNG Môn thi: TOÁN, khối A TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Thời gian làm bài: 180 phút, không kể thời gian giao đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số 4 2( ) 8x 9x 1y f x= = − + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình 4 28 os 9 os 0c x c x m− + = với [0; ]x pi∈ . Câu II (2 điểm) 1. Giải phương trình: ( ) 3log12 2 2 x x x x − − = − 2. Giải hệ phương trình: 2 2 2 2 12 12 x y x y y x y + + − = − = Câu III (1 điểm) Tính diện tích của miền phẳng giới hạn bởi các đường 2| 4 |y x x= − và 2y x= . Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r cho trước. Tính thể tích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ. Câu V (1 điểm) Định m để phương trình sau có nghiệm 24sin3xsinx + 4cos 3x - os x + os 2x + 0 4 4 4 c c m pi pi pi − + = PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. Cho ∆ ABC có đỉnh A(1;2), đường trung tuyến BM: 2 1 0x y+ + = và phân giác trong CD: 1 0x y+ − = . Viết phương trình đường thẳng BC. 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số 2 2 2 2 x t y t z t = − + = − = + .Gọi ∆ là đường thẳng qua điểm A(4;0;-1) song song với (D) và I(-2;0;2) là hình chiếu vuông góc của A trên (D). Trong các mặt phẳng qua ∆ , hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất. Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 1 1 1 5 1 1 1xy yz zx x y z + + ≤ + + + + + 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D. 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số 1 2 1 2 x t y t z t = − + = − = .Một điểm M thay đổi trên đường thẳng ∆ , xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 2 Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh 1 1 2 2 3 3 2 3 3 b c a a b a c a b c a c a b + + + + < + + + + + + ----------------------Hết---------------------- Đáp án Câu Ý Nội dung Điểm I 2,00 1 1,00 + Tập xác định: D = ℝ 0,25 + Sự biến thiên: • Giới hạn: lim ; lim x x y y →−∞ →+∞ = +∞ = +∞ • ( )3 2' 32x 18x = 2x 16x 9y = − − 0 ' 0 3 4 x y x = = ⇔ = ± 0,25 • Bảng biến thiên. ( )3 49 3 49; ; 0 1 4 32 4 32CT CT y y y y y y = − = − = = − = = C§ 0,25 • Đồ thị 0,25 2 1,00 Xét phương trình 4 28 os 9 os 0c x c x m− + = với [0; ]x pi∈ (1) Đặt osxt c= , phương trình (1) trở thành: 4 28 9 0 (2)t t m− + = Vì [0; ]x pi∈ nên [ 1;1]t ∈ − , giữa x và t có sự tương ứng một đối một, do đó số nghiệm của phương trình (1) và (2) bằng nhau. 0,25 www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 3 Ta có: 4 2(2) 8 9 1 1 (3)t t m⇔ − + = − Gọi (C1): 4 28 9 1y t t= − + với [ 1;1]t ∈ − và (D): y = 1 – m. Phương trình (3) là phương trình hoành độ giao điểm của (C1) và (D). Chú ý rằng (C1) giống như đồ thị (C) trong miền 1 1t− ≤ ≤ . 0,25 Dựa vào đồ thị ta có kết luận sau: • 81 32 m > : Phương trình đã cho vô nghiệm. • 81 32 m = : Phương trình đã cho có 2 nghiệm. • 811 32 m≤ < : Phương trình đã cho có 4 nghiệm. • 0 1m< < : Phương trình đã cho có 2 nghiệm. • 0m = : Phương trình đã cho có 1 nghiệm. • m < 0 : Phương trình đã cho vô nghiệm. 0,50 II 2,00 1 1,00 Phương trình đã cho tương đương: 33 loglog 3 2 0 22 0 111 log ln 0ln 01 222 222 0 xx x xx x xxx xxx − = =− = ⇔ ⇔ − = − = − = >> − > 0,50 3 2 2 2 log 0 1 1 21 1 3ln 0 1 2 2 2 2 22 x x x x x x x x x x x xx = = = = = = ⇔ ⇔ ⇔ ⇔ = − = − = = > >> 0,50 2 1,00 Điều kiện: | | | |x y≥ Đặt 2 2 ; 0u x y u v x y = − ≥ = + ; x y= − không thỏa hệ nên xét x y≠ − ta có 21 2 uy v v = − . Hệ phương trình đã cho có dạng: 2 12 12 2 u v u u v v + = − = 0,25 4 8 u v = ⇔ = hoặc 3 9 u v = = + 2 24 4 8 8 u x y v x y = − = ⇔ = + = (I) + 2 23 3 9 9 u x y v x y = − = ⇔ = + = (II) 0,25 Giải hệ (I), (II). 0,25 www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 4 Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình ban đầu là ( ) ( ){ }5;3 , 5;4S = 0,25 III 1,00 Diện tích miền phẳng giới hạn bởi: 2| 4 | ( )y x x C= − và ( ) : 2d y x= Phương trình hoành độ giao điểm của (C) và (d): 2 2 2 2 2 0 0 0 | 4 | 2 24 2 6 0 64 2 2 0 x x x x x x xx x x x x xx x x x x ≥ ≥ = − = ⇔ ⇔ ⇔ =− = − = = − = − − = Suy ra diện tích cần tính: ( ) ( )2 62 2 0 2 4 2 4 2S x x x dx x x x dx= − − + − −∫ ∫ 0,25 Tính: ( )2 2 0 | 4 | 2I x x x dx= − −∫ Vì [ ] 20;2 , 4 0x x x∀ ∈ − ≤ nên 2 2| 4 | 4x x x x− = − + ⇒ ( )2 2 0 44 2 3 I x x x dx= − + − =∫ 0,25 Tính ( )6 2 2 | 4 | 2K x x x dx= − −∫ Vì [ ] 22;4 , 4 0x x x∀ ∈ − ≤ và [ ] 24;6 , 4 0x x x∀ ∈ − ≥ nên ( ) ( )4 62 2 2 4 4 2 4 2 16K x x x dx x x x dx= − − + − − = −∫ ∫ . 0,25 Vậy 4 5216 3 3 S = + = 0,25 IV 1,00 Gọi H, H’ là tâm của các tam giác đều ABC, A’B’C’. Gọi I, I’ là trung điểm của AB, A’B’. Ta có: ( ) ( ) ( )' ' ' ' ' ' AB IC AB CHH ABB A CII C AB HH ⊥ ⇒ ⊥ ⇒ ⊥ ⊥ Suy ra hình cầu nội tiếp hình chóp cụt này tiếp xúc với hai đáy tại H, H’ và tiếp xúc với mặt bên (ABB’A’) tại điểm 'K II∈ . 0,25 www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 5 Gọi x là cạnh đáy nhỏ, theo giả thiết 2x là cạnh đáy lớn. Ta có: 1 3 1 3 ' ' ' ' ' ; 3 6 3 3 x xI K I H I C IK IH IC= = = = = = Tam giác IOI’ vuông ở O nên: 2 2 2 23 3' . . 6r 6 3 x xI K IK OK r x= ⇒ = ⇒ = 0,25 Thể tích hình chóp cụt tính bởi: ( )' . '3hV B B B B= + + Trong đó: 2 2 2 2 24x 3 3 3r 33 6r 3; ' ; 2r 4 4 2 xB x B h= = = = = = 0,25 Từ đó, ta có: 2 2 3 2 22r 3r 3 3r 3 21r . 36r 3 6r 3. 3 2 2 3 V = + + = 0,25 V 1,00 Ta có: +/ ( )4sin3xsinx = 2 cos2x - cos4x ; +/ ( )4 os 3x - os x + 2 os 2x - os4x 2 sin 2x + cos4x 4 4 2 c c c c pi pi pi = + = +/ ( )2 1 1os 2x + 1 os 4x + 1 sin 4x 4 2 2 2 c c pi pi = + = − Do đó phương trình đã cho tương đương: ( ) 1 12 os2x + sin2x sin 4x + m - 0 (1) 2 2 c + = Đặt os2x + sin2x = 2 os 2x - 4 t c c pi = (điều kiện: 2 2t− ≤ ≤ ). 0,25 Khi đó 2sin 4x = 2sin2xcos2x = t 1− . Phương trình (1) trở thành: 2 4 2 2 0t t m+ + − = (2) với 2 2t− ≤ ≤ 2(2) 4 2 2t t m⇔ + = − Đây là phuơng trình hoành độ giao điểm của 2 đường ( ) : 2 2D y m= − (là đường song song với Ox và cắt trục tung tại điểm có tung độ 2 – 2m) và (P): 2 4y t t= + với 2 2t− ≤ ≤ . 0,25 Trong đoạn 2; 2 − , hàm số 2 4y t t= + đạt giá trị nhỏ nhất là 2 4 2− tại 2t = − và đạt giá trị lớn nhất là 2 4 2+ tại 2t = . 0,25 Do đó yêu cầu của bài toán thỏa mãn khi và chỉ khi 2 4 2 2 2 2 4 2m− ≤ − ≤ + 2 2 2 2m⇔ − ≤ ≤ . 0,25 VIa 2,00 1 1,00 Điểm ( ): 1 0 ;1C CD x y C t t∈ + − = ⇒ − . Suy ra trung điểm M của AC là 1 3; 2 2 t tM + − . 0,25 www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 6 Điểm ( )1 3: 2 1 0 2 1 0 7 7;8 2 2 t tM BM x y t C+ − ∈ + + = ⇒ + + = ⇔ = − ⇒ − 0,25 Từ A(1;2), kẻ : 1 0AK CD x y⊥ + − = tại I (điểm K BC∈ ). Suy ra ( ) ( ): 1 2 0 1 0AK x y x y− − − = ⇔ − + = . Tọa độ điểm I thỏa hệ: ( )1 0 0;1 1 0 x y I x y + − = ⇒ − + = . Tam giác ACK cân tại C nên I là trung điểm của AK ⇒ tọa độ của ( )1;0K − . 0,25 Đường thẳng BC đi qua C, K nên có phương trình: 1 4 3 4 0 7 1 8 x y x y+ = ⇔ + + = − + 0,25 2 1,00 Gọi (P) là mặt phẳng đi qua đường thẳng ∆ , thì ( ) //( )P D hoặc ( ) ( )P D⊃ . Gọi H là hình chiếu vuông góc của I trên (P). Ta luôn có IH IA≤ và IH AH⊥ . 0,25 Mặt khác ( ) ( )( ) ( )( ) ( ) , ,d D P d I P IH H P = = ∈ Trong mặt phẳng ( )P , IH IA≤ ; do đó axIH = IA H Am ⇔ ≡ . Lúc này (P) ở vị trí (P0) vuông góc với IA tại A. 0,25 Vectơ pháp tuyến của (P0) là ( )6;0; 3n IA= = − , cùng phương với ( )2;0; 1v = − . Phương trình của mặt phẳng (P0) là: ( ) ( )2 4 1. 1 2x - z - 9 = 0x z− − + = . 0,50 VIIa 1,00 Để ý rằng ( ) ( ) ( ) ( )1 1 1 0xy x y x y+ − + = − − ≥ ; và tương tự ta cũng có 1 1 yz y z zx z x + ≥ + + ≥ + 0,50 Vì vậy ta có: 0,50 www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 7 ( ) 1 1 1 1 1 1 1 1 1 1 1 1 3 1 zx+y 1 5 1 1 5 5 x y z x y z xy yz zx yz zx xy x y z yz xy z z y x yz zx y xy z z y x z y y z + + + + ≤ + + + + + + + + + + + ≤ + + + + + = − − + + + + ≤ − − + + + = VIb 2,00 1 1,00 Ta có: ( )1;2 5AB AB= − ⇒ = . Phương trình của AB là: 2 2 0x y+ − = . ( ) ( ): ;I d y x I t t∈ = ⇒ . I là trung điểm của AC và BD nên ta có: ( ) ( )2 1;2 , 2 ;2 2C t t D t t− − . 0,25 Mặt khác: D . 4ABCS AB CH= = (CH: chiều cao) 4 5 CH⇒ = . 0,25 Ngoài ra: ( ) ( ) ( ) 4 5 8 8 2 ; , ;| 6 4 | 4 3 3 3 3 3; 5 5 0 1;0 , 0; 2 t C Dtd C AB CH t C D = ⇒ − = ⇔ = ⇔ = ⇒ − − Vậy tọa độ của C và D là 5 8 8 2; , ; 3 3 3 3 C D hoặc ( ) ( )1;0 , 0; 2C D− − 0,50 2 1,00 Gọi P là chu vi của tam giác MAB thì P = AB + AM + BM. Vì AB không đổi nên P nhỏ nhất khi và chỉ khi AM + BM nhỏ nhất. Đường thẳng ∆ có phương trình tham số: 1 2 1 2 x t y t z t = − + = − = . Điểm M ∈ ∆ nên ( )1 2 ;1 ;2M t t t− + − . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 22 2 2 22 22 2 2 22 2 22 2 2 2 4 2 9 20 3 2 5 4 2 2 6 2 9 36 56 3 6 2 5 3 2 5 3 6 2 5 AM t t t t t BM t t t t t t AM BM t t = − + + − − + = + = + = − + + − − + − + = − + = − + + = + + − + 0,25 Trong mặt phẳng tọa độ Oxy, ta xét hai vectơ ( )3 ;2 5u t= và ( )3 6;2 5v t= − + . 0,25 www.MATHVN.com & www.DeThiThuDaiHoc.com www.DeThiThuDaiHoc.com 8 Ta có ( ) ( ) ( ) ( ) 22 22 | | 3 2 5 | | 3 6 2 5 u t v t = + = − + Suy ra | | | |AM BM u v+ = + và ( )6;4 5 | | 2 29u v u v+ = ⇒ + = Mặt khác, với hai vectơ ,u v ta luôn có | | | | | |u v u v+ ≥ + Như vậy 2 29AM BM+ ≥ Đẳng thức xảy ra khi và chỉ khi ,u v cùng hướng 3 2 5 1 3 6 2 5 t t t ⇔ = ⇔ = − + ( )1;0;2M⇒ và ( )min 2 29AM BM+ = . 0,25 Vậy khi M(1;0;2) thì minP = ( )2 11 29+ 0,25 VIIb 1,00 Vì a, b, c là ba cạnh tam giác nên: a b c b c a c a b + > + > + > . Đặt ( ), , , , 0 , , 2 2 a b c a x y a z x y z x y z y z x z x y+ += = = > ⇒ + > + > + > . Vế trái viết lại: 2 3 3 2 a b a c aVT a c a b a b c x y z y z z x x y + + = + + + + + + = + + + + + 0,50 Ta có: ( ) ( ) 22 z zx y z z x y z z x y x y z x y + > ⇔ + + + + + . Tương tự: 2 2; .x x y y y z x y z z x x y z < < + + + + + + Do đó: ( )2 2x y zx y z y z z x x y x y z + + + + < = + + + + + . Tức là: 1 1 2 2 3 3 2 3 3 b c a a b a c a b c a c a b + + + + < + + + + + + 0,50
Tài liệu đính kèm: