Đề thi tốt nghiệp thpt năm 2010 môn: Toán – trung học phổ thông

Đề thi tốt nghiệp thpt năm 2010 môn: Toán – trung học phổ thông

Câu I.( 3 điểm). Cho hàm số y = -x3 + 3x2 -1

1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến đó vuông góc với (d): y = 1/9x - 2009 .

 

doc 4 trang Người đăng haha99 Lượt xem 886Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi tốt nghiệp thpt năm 2010 môn: Toán – trung học phổ thông", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TỐT NGHIỆP THPT NĂM 2010
 ( ĐỀ THAM KHẢO) MÔN:TOÁN – Trung học phổ thông 
	 Thời gian:150 phút, không kể thời gian giao đề
I. PHẦN DÙNG CHUNG CHO TẤT CẢ THÍ SINH ( 7, 0 Điểm )
Câu I.( 3 điểm). Cho hàm số 
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến đó vuông góc với .
Câu II. ( 3 điểm).
 1. Giải phương trình:
 2. Tìm giá trị lớn nhất và nhỏ nhất của hàm số y = trên 
 3. Tính tích phân sau : 
Câu III. ( 1 điểm). Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của A xuống mp(BCD) . Tính diện tích xung quanh và thể tích khối trụ có đường tròn đáy ngoại tiếp tam giác BCD chiều cao AH.
II. PHẦN RIÊNG ( 3,0 Điểm ) Thí sinh học chương trình nào thì chỉ làm phần dành riêng cho chương trình đó ( phần 1 hoặc phần 2 )
 1. Theo chương trình chuẩn :
Câu IV.a ( 2 điểm). Trên Oxyz cho M (1 ; 2 ; -2), N (2 ; 0 ; -1) và mặt phẳng ( P ):.
Viết phương trình mặt phẳng ( Q ) qua 2 điểm M; N và vuông góc ( P ).
Viết phương trình mặt cầu ( S ) tâm I ( -1; 3; 2 ) và tiếp xúc mặt phẳng ( P ). 
Câu V.a ( 1 điểm). Tính diện tích hình phẳng giới hạn bởi: và y = x
 2. Theo chương trình nâng cao :
Câu IV.b ( 2 điểm). Trên Oxyz cho A (1 ; 2 ; -2 ), B (2 ; 0 ; -1) và đường thẳng (d):.
Viết phương trình mặt phẳng ( P ) qua 2 điểm A; B và song song ( d ).
Viết phương trình mặt cầu ( S ) tâm A và tiếp xúc đường thẳng ( d ). Tìm tọa độ tiếp điểm.
Câu V.b ( 1 điểm).
Tính diện tích hình phẳng giới hạn bởi đồ thị ( C ): và tiệm cận xiên của ( C ) và 2 đường thẳng x = 2 ; x = a ( với a > 2 ) . Tìm a để diện tích này bằng 3.
 ĐÁP ÁN THI TỐT NGHIỆP THPT
 MÔN: TOÁN - Thời gian: 150 phút 
I. PHẦN DÙNG CHUNG CHO TẤT CẢ THÍ SINH ( 7, 0 Điểm )
Câu I (3đ)
Đáp án
Điểm
1) (2 điểm) 
TXĐ: 
Sự biến thiên
Chiều biến thiên: , 
Suy ra hàm số nghịch biến trên , đồng biến trên 
Cực trị: hàm số có 2 cực trị
+ Điểm cực đại: = 3
+ Điểm cực đại: 
Giới hạn: 
Suy ra đồ thị hàm số không có tiệm cận .
0,25
0,50
0,25
Bảng biến thiên:
 x 0 2 
 y’ - 0 + 0 - 
 y 3 
 -1 CĐ 
 CT 
0,5
Đồ thị:
2) (1 điểm) 
 Tiếp tuyến của (C) có dạng 
 Trong đó: 
 Vậy có hai phương trình tiếp tuyến của (C) thoả điều kiện là:
0,25
0,50
0,25
 Câu II 
 (3đ)
1) (1 điểm)
ĐK: 
x = -2 thoả đk : Vậy pt có một nghiệm x = -2
0,25
0,25
0,25
0,25
2) (1 điểm)
Vậy 
0,50
0,25
0,25
3) (1 điểm)
; 
Đặt Với 
0,25
0,25
0,25
0,25
 Câu III
 (1 đ)
Tính bán kính đáy R = AH = . Độ dài chiều cao hình trụ h = l = SH = 
0,50
0,50
 Câu IVa 
 (2 điểm)
II. PHẦN RIÊNG ( 3, 0 Điểm )
(1 điểm)
Ta có: là VTPT của (Q)
Pt (Q): 
0,50
0,50
2. (1 điểm)	
Mặt cầu (S) có bán kính Pt (S): 
0,50
0,50
 Câu V.a 
(1 điểm)
PT hoành độ giao điểm 
Diện tích 
0,50
0,50
 Câu IV.b 
(2 điểm)
1. (1 điểm)
1. (1 điểm)	
1,00
Ta có: là VTPT của (P)
Pt (P): 
0,50
0,50
2. (1 điểm)	
Mặt cầu (S) có bán kính 
Pt (S): 
Pt mặt phẳng qua A vuông góc d: 
Thay d vào pt mp trên suy ra tiếp điểm 
0,25
0,25
0,25
0,25
 Câu V.b (1điểm)
 suy ra tiệm cận xiên 
Diện tích (ddvdt)
0,50
0,25
0,25

Tài liệu đính kèm:

  • docTham khao Toan BGDHD so 14.doc