Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn C : 4x2 + 4 y2 -16x - 8 y = 29 . Tìm tọa độ điểm
M có hoành độ dương nằm trên parabol P : y = 2x2 sao cho từ M kẻ được hai tiếp tuyến tới C mà góc giữa hai tiếp tuyến đó bằng 60 .
TRUONGHOCSO.COM MÃ SỐ B2 (Đề thi gồm 01 trang) TUYỂN TẬP ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012 - 2013 Môn thi: TOÁN; Khối: B Thời gian làm bài: 180 phút, không kể thời gian phát đề Câu 1 (2,0 điểm). Cho hàm số y = x3 - x2 - 3x + . I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 1 8 3 3 1. Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2. Lập phương trình đường thẳng d song song với trục hoành và cắt đồ thị (C ) tại hai điểm phân biệt A, B sao cho tam giác OAB cân tại O (với O là gốc tọa độ). Câu 2 (1,0 điểm). Giải bất phương trình x -1 > 3x3 + 2x -1 3x2 - x +1 ( x Î ¡) . cos x (cosx -1) Câu 3 (1,0 điểm). Giải phương trình 2 cosx + sinx = 2 + 2sinx ( x Î ¡) . dx Câu 4 (1,0 điểm). Tính tích phân I = ò 6 1 x + 6 3 + x +12 . 1 Câu 5 (1,0 điểm). Cho hình lăng trụ ABC.A1BC1 có A1ABC là hình chóp tam giác đều cạnh đáy AB = a . Biết độ dài đoạn vuông góc chung của A1 A và BC là a 3 4 . Tính thể tích khối chóp A1BB1C1C . Câu 6 (1,0 điểm). Cho ba số thực dương x, y, z thỏa mãn điều kiện xyz = 1. Tìm giá trị lớn nhất của biểu thức 1 1 1 F = + + 4 + x + y 4 + y + z 4 + z + x . Câu 8.a (1,0 điểm). Cho khai triển Newton ç 4 + x7 ÷ . Xác định hệ số của hạng tử chứa x26 biết rằng n là số nguyên dương thỏa mãn hệ thức C2n+1 + C2n+1 + ... + C2n+1 = 220 -1 . II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C ) : 4x2 + 4 y2 -16x - 8 y = 29 . Tìm tọa độ điểm M có hoành độ dương nằm trên parabol ( P) : y = 2x2 sao cho từ M kẻ được hai tiếp tuyến tới (C ) mà góc giữa hai tiếp tuyến đó bằng 60o . n æ 1 ö è x ø 1 2 n Câu 9.a (1,0 điểm). Tìm giá trị của tham số m để phương trình sau có nghiệm ( 1- x + x ) 3 - x (1- x) = m ( x Î ¡) . B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC với AB = 5 và C (1;3) , phương trình đường thẳng AB : x + 2 y - 3 = 0 . Trọng tâm G của tam giác nằm trên đường thẳng d : x + y - 2 = 0 . Xác định tọa độ hai đỉnh A, B của tam giác ABC . Câu 8.b (1,0 điểm). Trong quá trình làm đề thi trắc nghiệm, có 20 câu hỏi ngẫu nhiên, trong đó có 9 câu hỏi mức độ dễ, 7 câu hỏi mức độ trung bình, còn lại là câu hỏi khó. Người ta muốn chọn ra 7 câu hỏi sao cho có đủ cả ba mức độ, hãy tính số cách chọn. ï = 2 ì y2 -x2 e Câu 9.b (1,0 điểm). Giải hệ phương trình í x2 +1 y +1 ( x; y Î ¡) . î ï3log3 ( x + 2 y + 6) = 2log2 ( x + y + 2) +1 ---------------HẾT--------------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:...;Số báo danh:.
Tài liệu đính kèm: