I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I (2 điểm) Cho hàm số y = 2x-3/x-2 có đồ thị là (C)
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên.
2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A,
B sao cho AB ngắn nhất
Biên soạn: Trần Duy Thái 2 Sở GD & ĐT Tiền Giang ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN Trường THPT Gò Công Đông Môn: Toán - Thời gian: 180 phút ĐỀ 1 I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số y = 2 3 2 x x có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, B sao cho AB ngắn nhất. Câu II (2 điểm) 1) Giải phương trình: 2 3 4 2 3 4sin sin sin sin cos cos cos cosx x x x x x x x 2) Giải phương trình: 22 21 5 2 4; x x x x R Câu III (1 điểm) Tính tích phân: 2 1 ln ln 1 ln e x I x dx x x Câu IV (1 điểm) Một hình nón đỉnh S , có tâm đường tròn đáy là .O ,A B là hai điểm trên đường tròn đáy sao cho khoảng cách từ O đến đường thẳng AB bằng a , 060ASO SAB . Tính theo a chiều cao và diện tích xung quanh của hình nón Câu V (1 điểm) Cho hai số dương ,x y thỏa mãn: 5x y . Tìm giá trị nhỏ nhất của biểu thức: 4 2 4 x y x y P xy II. PHẦN RIÊNG : Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho đường thẳng ( )d có phương trình : 0x y và điểm (2;1)M . Tìm phương trình đường thẳng cắt trục hoành tại A cắt đường thẳng ( )d tại B sao cho tam giác AMB vuông cân tại M 2) Trong không gian tọa độ Oxyz , lập phương trình mặt phẳng đi qua hai điểm 0; 1;2 ,A 1;0;3B và tiếp xúc với mặt cầu S có phương trình: 2 2 2( 1) ( 2) ( 1) 2x y z Câu VII (1 điểm) Cho số phức z là một nghiệm của phương trình: 2 1 0z z . Rút gọn biểu thức 2 2 2 2 2 3 4 2 3 4 1 1 1 1 P z z z z z z z z 2. Theo chương trình nâng cao. Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ Oxy cho đường tròn C có phương trình 2 2: 4 25x y và điểm (1; 1)M . Tìm phương trình đường thẳng đi qua điểm M và cắt đường tròn C tại 2 điểm ,A B sao cho 3MA MB 2) Trong không gian tọa độ Oxyz cho mặt phẳng P có phương trình: 1 0x y . Lập phương trình mặt cầu S đi qua ba điểm 2;1; 1 , 0;2; 2 , 1;3;0A B C và tiếp xúc với mặt phẳng P BỘ ĐỀ LUYỆN THI CẤP TỐC MÔN TOÁN 2011 www.VNMATH.com Biên soạn: Trần Duy Thái 3 Câu VII (1 điểm) Giải bất phương trình: 2 1 2 2 2 1 2 3 log 1 log 1 6 2 log 1 2 log ( 1) x x x x ĐÁP ÁN ĐỀ 1 1) y= 2 3 2 x x (C) D= R\ {2} lim 2 : 2 x y TCN y 2 2 lim ; lim x x y y TCĐ x = 2 y’ = 2 1 0; 2 ( 2) x x BBT 2) Gọi M(xo; 0 0 2 3 2 x x ) (C) . Phương trình tiếp tuyến tại M: () y = 2 0 0 2 2 0 0 2 6 6 ( 2) ( 2) x xx x x ( ) TCĐ = A (2; 0 0 2 2 2 x x ) ( ) TCN = B (2x0 –2; 2) 0 0 2(2 4; ) 2 AB x x AB = 20 2 0 44( 2) 2 2 ( 2) cauchy x x AB min = 2 2 0 3 (3;3) 1 (1;1)o x M x M II 1. 2 3 4 2 3 4sin sin sin sin cos cos cos cosx x x x x x x x 1,0 TXĐ: D =R 2 3 4 2 3 4sin sin sin sin cos cos cos cosx x x x x x x x sin 0 (sin ). 2 2(sin ) sin . 0 2 2(sin ) sin . 0 x cosx x cosx x cosx x cosx x cosx x cosx 0,25 + Với sin 0 ( ) 4 x cosx x k k Z 0,25 + Với 2 2(sin ) sin . 0x cosx x cosx , đặt t = sin (t 2; 2 )x cosx được pt : t2 + 4t +3 = 0 1 3( ) t t loai 0.25 -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 x y www.VNMATH.com Biên soạn: Trần Duy Thái 4 t = -1 2 ( ) 2 2 x m m Z x m Vậy : ( ) 4 2 ( ) 2 2 x k k Z x m m Z x m 0,25 Câu II.2 (1,0 đ) 22 21 5 2 4; x x x x R Đặt 2 2 4 22 4 2( 2 )t x x t x x ta được phương trình 2 21 5 2 8 0 2 t t t t 4 2 t t + Với t = 4 Ta có 2 4 2 4 2 0 0 2 4 4 2( 2 ) 16 2 8 0 x x x x x x x x 2 0 2 2 x x x + Với t = 2 ta có 2 4 2 4 2 0 0 2 4 2 2( 2 ) 4 2 2 0 x x x x x x x x 2 0 3 1 3 1 x x x ĐS: phương trình có 2 nghiệm 2, 3 1x x 0,25 0,25 0,25 0,25 III 2 1 ln ln 1 ln e x I x dx x x I1 = 1 ln 1 ln e x dx x x , Đặt t = 1 ln x , Tính được I1 = 4 2 2 3 3 0.5 22 1 ln e I x dx , lấy tích phân từng phần 2 lần được I2 = e – 2 I = I1 + I2 = 2 2 2 3 3 e 0.25 0.25 www.VNMATH.com Biên soạn: Trần Duy Thái 5 Câu IV (1,0 đ) Gọi I là trung điểm của AB , nên OI a Đặt OA R 060SAB SAB đều 1 1 1 2 2 2 3sin OA R IA AB SA ASO Tam giác OIA vuông tại I nên 2 2 2OA IA IO 2 2 2 6 3 2 R a R a R 2SA a Chiếu cao: 2 2 a SO Diện tích xung quanh: 2 6 2 3 2xq a S Rl a a 0,25 0,25 0,25 0,25 Câu V (1,0 đ) Cho hai số dương ,x y thỏa mãn: 5x y . 4 2 4 1 4 1 4 2 4 4 2 2 x y x y x y y x y P xy y x y x Thay 5y x được: 4 1 5 4 1 5 4 1 5 3 2 . 2 . 4 2 2 4 2 4 2 2 y x x y y P x x y x y x y x P bằng 3 2 khi 1; 4x y Vậy Min P = 3 2 Lưu ý: Có thể thay 5y x sau đó tìm giá trị bé nhất của hàm số 3 5 3 5 ( ) (5 ) 4 x x g x x x 0,25 0,50 0,25 Câu AVI.1 (1,0 đ) Anằm trên Ox nên ;0A a , B nằm trên đường thẳng 0x y nên ( ; )B b b , (2;1)M ( 2; 1), ( 2; 1)MA a MB b b Tam giác ABM vuông cân tại M nên: 2 2 2 ( 2)( 2) ( 1) 0. 0 ( 2) 1 ( 2) ( 1) a b bMA MB MA MB a b b , do 2b không thỏa mãn vậy 2 2 2 2 2 2 1 2 , 21 2 , 2 2 2 1 ( 2) 1 ( 2) ( 1) 1 ( 2) ( 1) 2 b a bb a b b b b a b b b b b 2 2 2 21 2 , 2 12 1 4( 2) ( 1) . 1 0 ( 2) 3 ab a b bb ab b b b 0,25 0,25 S O A B I www.VNMATH.com Biên soạn: Trần Duy Thái 6 Với: 2 1 a b đường thẳng qua AB có phương trình 2 0x y Với 4 3 a b đường thẳng qua AB có phương trình 3 12 0x y 0,25 0,25 ĐỀ 2 I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số 3 22 3(2 1) 6 ( 1) 1y x m x m m x có đồ thị (Cm). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ;2 Câu II (2 điểm) a) Giải phương trình: 1)12cos2(3cos2 xx b) Giải phương trình : 3 2 3 512)13( 22 xxxx Câu III (1 điểm) Tính tích phân 2ln3 0 23 )2( xe dx I Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng (ABC) trùng với tâm O của tam giác ABC. Tính thể tích khối lăng trụ ABC.A’B’C’ biết khoảng cách giữa AA’ và BC là a 3 4 Câu V (1 điểm) Cho x,y,z thoả mãn là các số thực: 122 yxyx .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức 1 1 22 44 yx yx P II. PHẦN RIÊNG : Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) Dành cho thí sinh thi theo chương trình chuẩn Câu VIa (2 điểm) a) Cho hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C. b) Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Câu VIIa(1 điểm) Giải phương trình: 10)2)(3)(( 2 zzzz , z C. Dành cho thí sinh thi theo chương trình nâng cao Câu VIb (2 điểm) a. Trong mp(Oxy) cho 4 điểm A(1;0),B(-2;4),C(-1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng ( ) : 3 5 0x y sao cho hai tam giác MAB, MCD có diện tích bằng nhau b.Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 2 5 1 1 3 4 :1 zyx d 13 3 1 2 :2 zyx d Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2 Câu VIIb (1 điểm) Giải bất phương trình: 2log9)2log3( 22 xxx www.VNMATH.com
Tài liệu đính kèm: