Đề thi thử đại học cao đẳng lần IV môn thi: Toán – Khối D

Đề thi thử đại học cao đẳng lần IV môn thi: Toán – Khối D

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)

Câu I . Cho hàm số y= {x^4} - 2m{x^2} + 2m + {m^4}

1) Khảo sát và vẽ đồ thị (C) của hàm số khi m = 1.

2) Tìm m để hàm số có ba cực trị lập thành một tam giác đều.

 

doc 1 trang Người đăng ngochoa2017 Lượt xem 1136Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi thử đại học cao đẳng lần IV môn thi: Toán – Khối D", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC - ĐÀO TẠO BÌNH PHƯỚC
TRƯỜNG THPT CHUYÊN QUANG TRUNG
TỔ TOÁN
ĐỀ BÀI
ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2011-LẦN IV
 Môn thi: TOÁN – Khối D.
Thời gian làm bài: 180 phút, không kể thời gian giao đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I . Cho hàm số .
Khảo sát và vẽ đồ thị (C) của hàm số khi m = 1.
Tìm m để hàm số có ba cực trị lập thành một tam giác đều.
Câu II .
Giải bất phương trình sau: 
Giải phương trình lượng giác sau: 
Câu III . Tính tích phân sau: .
Câu IV. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A với . Biết
 SA vuông góc với mặt đáy và . Gọi M, N lần lượt là hai điểm trên các đoạn SB và SC sao 
 cho SM = SN = b. Tính thể tích của khối chóp S.AMN theo a và b. Tìm mối liên hệ giữa a và b để 
 góc giữa hai mặt phẳng (AMN) và (ABC) bằng . 
Câu V. Cho a, b,c là ba số thực dương. Chứng minh rằng: 
 .
PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VIa .
Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng (d): và đường tròn (C): . Chứng minh rằng (d) cắt (C) tại hai điểm phân biệt A, B. Tìm tọa độ của điểm M trên (C) sao cho tam giác ABM cân đỉnh M.
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (a): 3x + 2y – z + 4 = 0 và hai điểm A(4;0;0) B(0;4;0). Gọi I là trung điểm của đoạn thẳng AB. Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng (a), đồng thời K cách đều gốc tọa độ O và (a).
Câu VIIa .Tìm dạng lượng giác của số phức z biết , với .
B. Theo chương trình Nâng cao
Câu VIb .
Viết phương trình đường thẳng đi qua N(2; 1) và cắt đường tròn (C): tại hai điểm E, F sao cho N là trung điểm của EF.
Trong không gian với hệ toạ độ Oxyz cho mặt phẳng (P): và hai điểm A(3;1;0), 
 B(-9;4;9). Tìm toạ độ điểm M trên mặt phẳng (P) sao cho là lớn nhất .
Câu VIIb . Tìm m để hệ bất phương trình sau có nghiệm: .
HẾT

Tài liệu đính kèm:

  • docDe thi Thu DH 2010 2011 Chuyen Quang Trung BP.doc