Cu 1:Cho hàm số: y = x3 + 3x2 + mx + 1 có đồ (Cm); (m là tham số).
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3.
2. Xác định m để (Cm) cắt đường thẳng y = 1 tại 3 điểm phân biệt C(0, 1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau
ĐỀ THI ĐẠI HỌC 2010 theo chương mới của bộ năm 2010 I. PHẦN CHUNG: (7 điểm) Câu 1:Cho hàm số: y = x3 + 3x2 + mx + 1 có đồ (Cm); (m là tham số). 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3. 2. Xác định m để (Cm) cắt đường thẳng y = 1 tại 3 điểm phân biệt C(0, 1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau. Câu 2: 1. Giải phương trình: 2cos3x + sinx + cosx = 0 2. Giải hệ phương trình Câu 3: Cho số thực b ³ ln2. Tính J = và tìm Câu 4: Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh a, mặt bên (SAB) vuông góc với đáy, hai mặt bên còn lại cùng tạo với đáy góc a. Câu 5: Ch x, y, z là các số dương thoả mãn . Tìm giá trị lớn nhất của biểu thức P = II.PHẦN TỰ CHỌN: 1.Phần 1: Theo chương trình chuẩn Câu 6.1a 1.Phương trình hai cạnh của một tamgiác trong mặt phẳng tọa độ là 5x - 2y + 6 = 0; 4x + 7y – 21 = 0. viết phương trình cạnh thứ ba của tam giác đĩ, biết rằng trực tâm của nĩ trùng với gốc tọa độ O. 2. Trong không gian Oxyz, tìm trên Ox điểm A cách đều đường thẳng (d) : và mặt phẳng (a) : 2x – y – 2z = 0. Câu 6.2a Cho tập hợp X = . Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau đôi một từ X, sao cho một trong ba chữ số đầu tiên phải bằng 1. 2. Phần 2: Theo chương trình nâng cao. Câu 6b. 1b 1. Trong mpOxy, cho đường trịn (C): x2 + y2 – 6x + 5 = 0. Tìm M thuộc trục tung sao cho qua M kẽ được hai tiếp tuyến của (C) mà gĩc giữa hai tiếp tuyến đĩ bằng 600. 2.Trong không gian oxyz cho hai đường thẳng: (d1) : ; (d2) : Chứng minh (d1) và (d2) chéo nhau. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2). Câu 6b.2b Giải phương trình sau trong C: Z4 – Z3 + 6Z2 – 8Z – 16 = 0 -----------------------------------------Hết------------------------------------------- HƯỚNG DẪN GIẢI: I. PHẦN CHUNG: Câu 1: : y = x3 + 3x2 + mx + 1 (Cm) 1. m = 3 : y = x3 + 3x2 + 3x + 1 (C3) + TXĐ: D = R + Giới hạn: + y’ = 3x2 + 6x + 3 = 3(x2 + 2x + 1) = 3(x + 1)2 ³ 0; "x * Bảng biến thiên: + y” = 6x + 6 = 6(x + 1) y” = 0 Û x = –1 điểm uốn I(-1;0) * Đồ thị (C3): 2. Phương trình hoành độ giao điểm của (Cm) và đường thẳng y = 1 là: x3 + 3x2 + mx + 1 = 1 Û x(x2 + 3x + m) = 0 Û * (Cm) cắt đường thẳng y = 1 tại C(0, 1), D, E phân biệt: Û Phương trình (2) có 2 nghiệm xD, xE ¹ 0. Û Lúc đó tiếp tuyến tại D, E có hệ số góc lần lượt là: kD = y’(xD) = kE = y’(xE) = Các tiếp tuyến tại D, E vuông góc khi và chỉ khi: kDkE = –1. Û (3xD + 2m)(3xE + 2m) = 9xDxE+6m(xD + xE) + 4m2 = –1 Û 9m + 6m (–3) + 4m2 = –1; (vì xD + xE = –3; xDxE = m theo định lý Vi-ét). Û 4m2 – 9m + 1 = 0 Û m = ĐS: m = Câu 2: 1. Û sinsinx + coscosx = – cos3x. Û cos Û cos Û Û x = (k Ỵ Z) 2. Điều kiện: x ≥ 2 và y ≥ 2 : Lấy (1) trừ (2) vế theo vế ta được: Û x = y (trong ngoặc luơn dương và x và y đều lớn hơn 2) Vậy từ hệ trên ta cĩ: Û x = 3 Vậy nghiệm của hệ x = y = 3 Câu 3: J = (với u = ex – 2, du = exdx) Suy ra: Câu 4: S H P C A B N j Dựng ° Ta có: và SH là đường cao của hình chóp. ° Dựng ° DSHN = DSHP Þ HN = HP. ° DAHP vuông có: ° DSHP vuông có: ° Thể tích hình chóp Câu 5: Áp dụng bất đẳng thức Cơ- Si, ta cĩ: 4ab ≤ (a + b)2 Ta cĩ: Tương tự: và Vậy Vậy MaxP = khi x = y = z = II.PHẦN TỰ CHỌN: 1. Phần 1: Phần dành cho chương trình cơ bản Câu 6a.1a 1.Giả sử AB: 5x - 2y + 6 = 0; AC: 4x + 7y – 21 = 0 Vậy A(0;3) Đường cao đỉnh BO đi qua O nhận VTCP = (7; - 4) của AC làm VTPT Vây BO: 7x - 4y = 0 vậy B(-4;-7) A nằm trên Oy, vậy đường cao AO chính là trục OY, Vậy AC: y + 7 = 0 2. Gọi A(a; 0; 0) . ° Khoảng cách từ A đến mặt phẳng (a) : ° (D) qua và có vectơ chỉ phương ° Đặt ° Do đó: d(A; D) là đường cao vẽ từ A trong tam giác ° Theo giả thiết: d(A; a) = d(A; D) ° Vậy, có một điểm A(3; 0; 0). Câu 6a.2a n = * Xem các số hình thức , kể cả a = 0. Có 3 cách chọn vị trí cho 1 (1 là a hoặc là b hoặc là c). Sau đó chọn trị khác nhau cho 4 vị trí còn lại từ X \ : số cách chọn . Như thế có 3 x (7 x 6 x 5 x 4) = 2520 số hình thức thỏa yêu cầu đề bài. * Xem các số hình thức . * Loại những số dạng hình thức ra, ta còn 2520 – 240 = 2280 số n thỏa yêu cầu đề bài. 1. Phần 2: Phần dành cho chương trình nâng cao: Câu 6b.1b 1. (C) cĩ tâm I(3;0) và bán kính R = 2 M Ỵ Oy Þ M(0;m) Qua M kẽ hai tiếp tuyến MA và MB ( A và B là hai tiếp điểm) Vậy Vì MI là phân giác của (1) Û = 300 Û MI = 2R Û (2) Û = 600 Û MI = R Û Vơ nghiệm Vậy cĩ hai điểm M1(0;) và M2(0;-) 2.- (d1) đi qua điểm A(0; 0; 4) và có vectơ chỉ phương - (d2) đi qua điểm B(3; 0; 0) và có vectơ chỉ phương ° không đồng phẳng. ° Vậy, (d1) và (d2) chéo nhau. ° Gọi MN là đường vuông góc chung của (d1) và (d2) ° , ° Ta có: ° Tọa độ trung điểm I của MN: I(2; 1; 2), bán kính ° Vậy, phương trình mặt cầu (S): Câu 6b.2b Xét phương trình Z4 – Z3 + 6Z2 – 8Z – 16 = 0 Dễ dàng nhận thấy phương trình có nghiệm Z1 = –1, sau đó bằng cách chia đa thức ta thấy phương trình có nghiệm thứ hai Z2 = 2. Vậy phương trình trở thành: (Z + 1)(Z – 2)(Z2 + 8) = 0 Suy ra: Z3 = và Z4 = – Đáp số: -------------------------------Hết-----------------------------------
Tài liệu đính kèm: