Đề luyện thi đại học môn Toán - Đề số 10

Đề luyện thi đại học môn Toán - Đề số 10

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)

Câu I (2 điểm) Cho hàm số y=2x+1/x+1(C)

 1.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho

 2.Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất.

 

doc 6 trang Người đăng ngochoa2017 Lượt xem 1016Lượt tải 0 Download
Bạn đang xem tài liệu "Đề luyện thi đại học môn Toán - Đề số 10", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013
 ĐỀ THAM KHẢO Môn: TOÁN; Khối A
 Thời gian làm bài 180 phút, không kể thời gian phát đề.
 ĐỀ SỐ 10
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I (2 điểm) Cho hàm số (C)
	1.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
	2.Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất.
Câu II (2 điểm) 
1.Giải phương trình sau: .
2. Giải hệ phương trình: .
Câu III (1 điểm) Tính tích phân: I = .
Câu IV(1 điểm) Cho tứ diện ABCD có AC = AD = a2, BC = BD = a, khoảng cách từ B đến mặt phẳng (ACD) bằng a3 . Tính góc giữa hai mặt phẳng (ACD) và (BCD). Biết thể của khối tứ diện ABCD bằng a31527.
Câu V (1 điểm) Với mọi số thực x, y thỏa điều kiện . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức .
II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần 
1.Theo chương trình Chuẩn
Câu VIa.( 2 điểm)
 1. Trong mp với hệ tọa độ Oxy cho đường tròn : x2 +y2 - 2x +6y -15=0 (C ). Viết PT đường thẳng (Δ) vuông góc với đường thẳng: 4x-3y+2 =0 và cắt đường tròn (C) tại A;B sao cho AB = 6.
 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: d1 : và 
 d2 :. Xét vị trí tương đối của d1 và d2 . Cho hai điểm A(1;-1;2) và B(3 ;- 4;-2), Tìm tọa độ điểm I trên đường thẳng d1 sao cho IA + IB đạt giá trị nhỏ nhất. 
Câu VII.a (1 điểm) Giải phương trình sau trên tập hợp số phức: z4 – z3 +6z2 – 8z – 16 = 0 . 
2. Theo chương trình Nâng cao.
Câu VIb.(2điểm) 1.Trong mặt phẳng Oxy cho elip (E): và đường thẳng :3x + 4y =12. Từ điểm M bất kì trên kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.
 2.Trong không gian với hệ tọa độ Oxyz , cho M(1;2;3).Lập phương trình mặt phẳng đi qua M cắt ba tia Ox tại A, Oy tại B, Oz tại C sao cho thể tích tứ diện OABC nhỏ nhất.
Câu VIIb. (1 điểm) Giải phương trình: (9x- 2.3x- 3)log3(x-1)+log1327=23.9x+12-9x
------------Hết------------
ĐÁP ÁN ĐỀ SỐ 10
Câu
Ý
Nội dung
Điểm
I
1
* Tập xác định: D = R\{ - 1}
* Sự biến thiên
- Giới hạn và tiệm cận: ; tiệm cận ngang: y = 2
 ; tiệm cận đứng: x = - 1
Bảng biến thiên
Ta có với mọi x- 1
Hàm số đồng biến trên mỗi khoảng (-; -1) và ( -1; +)
1đ
2
Gọi M(x0;y0) là một điểm thuộc (C), (x0- 1) thì 
Gọi A, B lần lợt là hình chiếu của M trên TCĐ và TCN thì
MA = |x0+1| , MB = | y0- 2| = |- 2| = ||
Theo Cauchy thì MA + MB 2=2
 MA + MB nhỏ nhất bằng 2 khi x0 = 0 hoặc x0 = -2.Như vậy ta có hai điểm cần tìm là (0;1) và (-2;3)
0,5
0,5
II
1
Thay (1) vào phương trình (*) ta có : 
Giải (2) : ; Giải (3) 
Kết luận : 
0,5
0,5
2
 Ta có: .
 Khi thì hệ VN. 
 Khi , chia 2 vế cho .
 Đặt , ta có : .
 Khi ,ta có : HPT . 
0,5
0.5
III
I = .
Tính I1 theo phương pháp từng phần I1 = 
0,5đ
0,5
IV
a3
a2
a
α
H
D
E
C
B
A
Gọi E là trung điểm của CD, kẻ BH ⊥ AE
Ta có △ACD cân tại A nên CD ⊥ AE
Tương tự △BCD cân tại B nên CD ⊥ BE
Suy ra CD ⊥(ABE) ⇒ CD ⊥ BH
Mà BH ⊥ AE suy ra BH ⊥ (ACD) 
Do đó BH = a3 và góc giữa hai mặt phẳng 
(ACD) và (BCD) là α
Thể tích của khối tứ diện ABCD là V=13BH.SACD=a31527
⇒SACD=a253⇒AE.DE=a253⇒AE2DE2=a459
Mà AE2+ED2=2a2
Khi đó :AE2,DE2 là 2 nghiệm của pt: x2 - 2a2x + a459 = 0
⇒AE2=a23DE2=5a23 hoặcAE2=5a23DE2=a23 trường hợp DE2=5a23 loại vì DE<a
Xét △BED vuông tại E nên BE = BD2-DE2=a2-a23=a23 
Xét △BHE vuông tại H nên sinα = BHBE=a3a23=12⇒α=450
Vậy góc giữa hai mp(ACD) và (BCD) là α=450
0,5
0,5
V
Đặt . Ta có: 
 Và . ĐK:. 
 Suy ra : .
 Do đó: , 
 và .
 KL: GTLN là và GTNN là ( HSLT trên đoạn )
0,5
0,5
VIa
1
Đường tròn ( C) có tâm I(1;-3); bán kính R=5
 I
 A H B
Gọi H là trung điểm AB thì AH=3 và IH ⊥AB suy ra IH =4
Mặt khác IH= d( I; Δ )
Vì Δ || d: 4x-3y+2=0 nên PT của Δ có dạng
3x+4y+c=0
d(I; Δ )= |c-9|5=4⇔c=29c=-11 
vậy có 2 đt thỏa mãn bài toán: 3x+4y+29=0 và 3x+4y-11=0
0,5
0,5
2
Véc tơ chỉ phương của hai đường thẳng lần lượt là: (4; - 6; - 8) ( - 6; 9; 12)
	+) và cùng phương
+) M( 2; 0; - 1) d1; M( 2; 0; - 1) d2 Vậy d1 // d2.
 *) = ( 2; - 3; - 4); AB // d1
Gọi A1 là điểm đối xứng của A qua d1 .Ta có: IA + IB = IA1 + IB A1B 
 IA + IB đạt giá trị nhỏ nhất bằng A1B 
 Khi A1, I, B thẳng hàng I là giao điểm của A1B và d
 Do AB // d1 nên I là trung điểm của A1B.
*) Gọi H là hình chiếu của A lên d1. Tìm được H 
A’ đối xứng với A qua H nên A’
I là trung điểm của A’B suy ra I
0,5
0,5
VIIa
Xét phương trình z4 – z3 +6z2 – 8z – 16 = 0 .
Dễ dàng nhận thấy phương trình có nghiệm Z1 = –1, sau đó bằng cách chia đa thức ta thấy phương trình có nghiệm thứ hai Z2 = 2. Vậy phương trình trở thành:
	(Z + 1)(Z – 2)(Z2 + 8) = 0
Suy ra: Z3 = và Z4 = –
Đáp số: 
0,5
0,5
VIb
1
Gäi M(x0 ;y0 ), A(x1;y1), B(x2;y2)
TiÕp tuyÕn t¹i A cã d¹ng . TiÕp tuyÕn ®i qua M nªn (1)
Ta thÊy täa ®é cña A vµ B ®Òu tháa m·n (1) nªn ®êng th¼ng AB cã pt
 do M thuéc nªn 3x0 + 4y0 =12 4y0 =12-3x0 
Gäi F(x;y) lµ ®iÓm cè ®Þnh mµ AB ®i qua víi mäi M th×
(x- y)x0 + 4y – 4 = 0 . VËy AB lu«n ®i qua ®iÓm cè ®Þnh F(1;1)
0,5
0,5
2
MÆt ph¼ng c¾t 3 tia Ox,Oy,Oz t¹i A(a;0;0),B(0;b;0),C(0;0;c) cã d¹ng 
Do M nªn: 
ThÓ tÝch:
MÆt ph¼ng cÇn t×m: 6x+3y+2z-18=0
0,5
0,5
VIIb
ĐK: x > 1
Với ĐK trên phương trình đã cho tương đương 
 9x- 2.3x- 3log3x-1-3=2.3x-9x
 ⇔3x- 3)(3x+ 1log3x-1-3-2.3x+9x=0
 ⇔3x- 3)(3x+ 1log3x-1+3x+13x-3=0
 ⇔3x- 3)(3x+ 1log3x-1+1=0
 ⇔3x- 3=0 log3x-1+1=0⇔x=1 (loại)x=43 ⇔x=43
Vậy phương trình đã cho có một nghiệm : x=43
0,5
0,5
Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định.
------------------Hết------------------

Tài liệu đính kèm:

  • docDe luyen thi dai hoc de so 10.doc