Đề kiểm tra giải môn toán bằng máy tính casio

Đề kiểm tra giải môn toán bằng máy tính casio

Bài 1: Tìm giá trị nhỏ nhất của hàm số: y = 1/ cos 4 x + 2 / 1 - cos2x, mọi x # k pi/2

 Min y = Khi x~

y~

Bài 2: Tính gần đúng giá trị cực đại và giá trị cực tiểu của hàm số: y = 3x2 - 4x + 1 / 2x + 3

 ĐS: yCĐ=, yCT =

Bai 3: Tính avà b nếu đường thẳng y = ax+b đi qua M(-2;3) là tiếp tuyến của parabol y2=8x.

Bài 4: Tính gần đúng toạ độ các điểm của đường thẳng: 3x+5y=4và elíp: x2/9 + y2/4 = 1

 

doc 2 trang Người đăng haha99 Lượt xem 1256Lượt tải 0 Download
Bạn đang xem tài liệu "Đề kiểm tra giải môn toán bằng máy tính casio", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Đề 06/50 MT: ĐỀ KIỂM TRA GIẢI TOÁN BẰNG MÁY TÍNH CASIO
THỜI GIAN: 90 PHÚT
Bài 1: Tìm giá trị nhỏ nhất của hàm số: 
	Min y = Khi 	
Bài 2: Tính gần đúng giá trị cực đại và giá trị cực tiểu của hàm số: 
	ĐS: yCĐ=, 	yCT = 
BaØi 3: Tính avà b nếu đường thẳng y = ax+b đi qua M(-2;3) là tiếp tuyến của parabol y2=8x.
 ĐS:	
Bài 4: Tính gần đúng toạ độ các điểm của đường thẳng: 3x+5y=4và elíp: 
 	ĐS: 	 
Bài 5: Tính gần đúng (độ,phút,giây) nghiệm của phương trình: 9cos3x - 5sin3x = 2
	ĐS: x » ,	x » 
Bài 6: Tính gần đúng giá trị lớn nhất và nhỏ nhất của hàm số: f(x) = cos2x+sinx + 
	ĐS: max f(x) » ; min f(x) » 
Bài 7: Tính gần đúng khoảng cách giữa điểm cực đại và điểm cực tiểu của đồ thị hàm số: 
	y=5x3-4x2-3x+2
	 ĐS: 
Bài 8: Cho tam giác ABC biết đường cao của nó là: ha = 7, hb = 8, hc = 9.
	a. Tính diện tích tam giác: S » 
	b. Tính các cạnh : a » b » c » 
Bài 9: Một bát diện đều có đỉnh là trung điểm các cạnh của một tứ diện đều cạnh a = .
	a. Tính thể tích của khối bát diện đều: VBD » .
	b. Tính tỉ số thể tích của bát diện đều và tứ diện đều đã cho: T » 
Bài 10: Cho hàm số : y = (m tham số) 
	a. Tìm m để hàm số có một điểm cực đại và một điểm cực tiểu của đồ thị mà khoảng cách giữa hai điểm đạt giá trị lớn nhất.	ĐS: m = 
	b. Tìm khoảng cách lớn nhất ứng với m vừa tìm được ở câu a) Đáp số: MN » 
 ĐÁP ÁN ĐỀ 06 /50 MT KIỂM TRA GIẢI TOÁN BẰNG MÁY TÍNH CASIO
	 	THỜI GIAN: 90 PHÚT
Bài 1: Tìm giá trị nhỏ nhất của hàm số: 
	Min y = » 5.828427125 Khi 	
Bài 2: Tính gần đúng giá trị cực đại và giá trị cực tiểu của hàm số: 
	ĐS: yCĐ= -12.92261629 , yCT = - 0.07738371
BaØi 3: Tính avà b nếu đường thẳng y = ax+b đi qua M(-2;3) là tiếp tuyến của parabol y2=8x.
 ĐS:	
Bài 4: Tính gần đúng toạ độ các điểm của đường thẳng: 3x+5y=4và elíp: 
 	 ĐS: 	
Bài 5: Tính gần đúng (độ,phút,giây) nghiệm của phương trình: 9cos3x - 5sin3x = 2
	ĐS: x » 16034’53’’+k1200 ,	x » -35057’4’’+k1200
Bài 6: Tính gần đúng giá trị lớn nhất và nhỏ nhất của hàm số: f(x) = cos2x+sinx + 
	ĐS: max f(x) »2.789213562; min f(x) » -1.317837245
Bài 7: Tính gần đúng khoảng cách giữa điểm cực đại và điểm cực tiểu của đồ thị hàm số: 
	y=5x3-4x2-3x+2
	 ĐS: 2.543884671
Bài 8: Cho tam giác ABC biết đường cao của nó là: ha = 7, hb = 8, hc = 9.
	a. Tính diện tích tam giác: S » 37.4132328
	b. Tính các cạnh : a » 10.68949509 b » 9.353308201 c »8.314051734
Bài 9: Một bát diện đều có đỉnh là trung điểm các cạnh của một tứ diện đều cạnh a = .
	a. Tính thể tích của khối bát diện đều: VBD » 1.091316738.
	b. Tính tỉ số thể tích của bát diện đều và tứ diện đều đã cho: T » 
Bài 10: Cho hàm số : y = (m tham số) 
	a. Tìm m để hàm số có một điểm cực đại và một điểm cực tiểu của đồ thị mà khoảng cách giữa hai điểm đạt giá trị lớn nhất.	ĐS: m = 1
	b. Tìm khoảng cách lớn nhất ứng với m vừa tìm được ở câu a) Đáp số: MN » 6.32455532

Tài liệu đính kèm:

  • docDe 1Casio(1).doc