Đề 6 Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009

Đề 6 Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009

 Câu I (3,0 điểm)

 Cho hàm số y = x4 - 2x2 - 1 có đồ thị (C)

a) Khảo sát sự biến thiên và vẽ đồ thị (C).

b) Dùng đồ thị (C ) , hãy biện luận theo m số nghiệm thực của phương trình x4 - 2x2 - m = 0 .

 

doc 3 trang Người đăng haha99 Lượt xem 1239Lượt tải 0 Download
Bạn đang xem tài liệu "Đề 6 Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 6
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm) 
 Câu I (3,0 điểm) 
 Cho hàm số có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Dùng đồ thị (C ) , hãy biện luận theo m số nghiệm thực của phương trình .
 Câu II ( 3,0 điểm ) 
a) Giải phương trình 
b) Tính tích phân : I = 
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = trên . 
Câu III ( 1,0 điểm ) 
Cho tứ diện SABC có ba cạnh SA,SB,SC vuông góc với nhau từng đôi một với SA = 1cm, SB = SC = 2cm .Xác định tân và tính bán kính của mặt cấu ngoại tiếp tứ diện , tính diện tích của mặt cầu và thể tích của khối cầu đó.
II . PHẦN RIÊNG (3 điểm) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó 
1. Theo chương trình chuẩn :
Câu IV.a (2,0 điểm): Trong không gian với hệ tọa độ Oxyz , cho 4 điểm A(2;1;1) ,B(0;2;1) ,C(0;3;0), D(1;0;1) .
 a. Viết phương trình đường thẳng BC .
 b. Chứng minh rằng 4 điểm A,B,C,D không đồng phẳng .
 c. Tính thể tích tứ diện ABCD .
Câu V.a ( 1,0 điểm ) : 
 Tính giá trị của biểu thức .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ): 
 Trong không gian với hệ tọa độ Oxyz cho điểm M(1;1;1) , hai đường thẳng 
 , và mặt phẳng (P) : 
 a. Tìm điểm N là hình chiếu vuông góc của điểm M lên đường thẳng () .
 b. Viết phương trình đường thẳng cắt cả hai đường thẳng và nằm trong mặt 
 phẳng (P) .
Câu V.b ( 1,0 điểm ) : 
 Tìm m để đồ thị của hàm số với cắt trục hoành tại hai điểm 
phân biệt A,B sao cho tuếp tuyến với đồ thị tại hai điểm A,B vuông góc nhau .
 . . . . . . . .Hết . . . . . . .
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ 
x
 0 1 
 0 + 0 0 +
y
 b) 1đ pt (1) 
 Phương trình (2) chính là phương trình điểm 
 chung của ( C ) và đường thẳng (d) : y = m – 1 
Căn cứ vào đồ thị (C ) , ta có :
 § m -1 < -2 m < -1 : (1) vô nghiệm 
 § m -1 = -2 m = -1 : (1) có 2 nghiệm
 § -2 < m-1<-1 -1 < m < 0 : (1) có 4 nghiệm 
 § m-1 = - 1 m = 0 : (1) có 3 nghiệm 
 § m – 1 > -1 : (1) có 2 nghiệm
Câu II ( 3,0 điểm ) 
 a) 1đ Điều kiện : 0 < x , x 
1đ 
 Ta có : với 
 .Đặt : . Do đó : 
c) 1đ Ta có : TXĐ 
 Vì 
 nên 
Câu III ( 1,0 điểm ) 
 Gọi I là trung điểm của AB . Từ I kẻ đường thằng vuông góc với mp(SAB) thì là trục của vuông .
Trong mp(SCI) , gọi J là trung điểm SC , dựng đường trung trực của cạnh SC của cắt tại O là tâm của mặt cầu ngoại tiếp tứ diện SABC .
Khi đó : Tứ giác SJOI là hình chữ nhật .
Ta tính được : SI = , OI = JS = 1 , bán kính R = OS = 
 Diện tích : S = 
 Thể tích : V = 
II . PHẦN RIÊNG ( 3 điểm ) 
. 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 a) 0,5đ (BC) : 
 b) 1,0đ Ta có : 
không đồng phẳng 
 c) 0,5đ 
Câu V.a ( 1,0 điểm ) : 
 P = -2
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 1đ Gọi mặt phẳng 
 Khi đó : 
 b) 1đ Gọi 
 Vậy 
Câu V.b ( 1,0 điểm ) : 
 Pt hoành độ giao điểm của và trục hoành : với 
 điều kiện 
 Từ (*) suy ra . Hệ số góc 
 Gọi là hoành độ của A,B thì phương trình (*) ta có : 
 Hai tiếp tuyến vuông góc với nhau thì 
 thỏa mãn (*)
 Vậy giá trị cần tìm là 

Tài liệu đính kèm:

  • docMon luyen toanQuoc Hoc Hue 6.doc