Chuyên đề về Hệ phương trình

Chuyên đề về Hệ phương trình

Rõ ràng mọi chuyện không đơn giản chút nào. Tuy nhiên có lẽ các bạn cũng sẽ nhận

ra sự tinh tế trong bài tóan, đó là ở bậc của mỗi phương trình. Phương trình đầu tiên

bậc 2 có lẽ chứa P. Thể nhưng nó không ở một dạng tích thuận tiện nào,trong khi

phương trình thứ hai lại ở dạng tích và bậc 4,gấp đôi bậc 2. Nếu các bạn nhìn trong

biểu thức S và P,bậc của P gấp đôi bậc của S,như vậy phải chăng phương trình thư

nhất là S,thứ hai là P. Nếu vậy thì các giá trị x và y trong P là gì. Quan sát phương

trình thứ hai các bạn có thể dễ dàng nhận ra sự tinh tế này, đó là x ( x+1) và y ( y+1).

pdf 11 trang Người đăng ngochoa2017 Lượt xem 1099Lượt tải 0 Download
Bạn đang xem tài liệu "Chuyên đề về Hệ phương trình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
I.Các hệ phương trình cơ bản 
A. Hệ phương trình đối xứng : 
Dạng 
( )
( )
, 0
, 0
f x y
g x y
=ìï
í
=ïî
 mà ở đó vai trò của ,x y như nhau. 
Tức là 
( , ) ( , ).
( , ) ( , ).
f x y f y x
g x y g y x
=ì
í =î
Cách giải: 
· Thông thường người ta đặt ẩn phụ: 
S x y= + hay S x y= - 
P xy= 
Þ
( )
( )
, 0
, 0
f S P
g S P
=ìï
í
=ïî
 sau đó tìm được ,S P và tìm được các nghiệm ( , )x y 
Ví dụ: Giải hệ 
2 2 6
5
x y xy
xy x y
ì + =
í
+ + =î
Như đã nói ở trên, ta hãy đặt ;S x y P xy= + = và hệ đã cho trở thành 
6 2 S=3
 hay 
5 3 P=2
SP S
S P P
= =ì ì ì
Þí í í+ = =î î î
Từ đây ta dễ dàng tìm được các nghiệm ( , )x y sau: 
 ( , ) (1,2);(2,1)x y = 
· Nhưng để phương pháp trên áp dụng hữu hiệu thì ta nên biến đổi một chút các ẩn 
số để sau khi đặt ẩn phụ, ta được những phương trình nhẹ nhàng hơn 
Ví dụ 1: 
( ) ( )3 3
5
1 1 35
xy x y
x y
+ + =ìï
í
+ + + =ïî
Đặt ( ) ( ) ( )( )1 1 ; 1 1S x y P x y= + + + = + + ta sẽ có hệ phương trình sau 
( )2
6 5 3 x=2
 hay 
3 35 6 2 y=3
P S x
S S P P y
=ì = =ì ì ìï Þ Þí í í í- = = =î î îïî
Ví dụ 2: 
2 2 8
( 1)( 1) 12
x y x y
xy x y
ì + + + =
í
+ + =î
Ở đây theo thông lệ chúng ta hãy thử đặt 
S x y
P xy
= +ì
í =î
, ta thu được hệ sau: 
2S 2 8
( 1) 12
S P
P P S
ì + - =
í
+ + =î
Rõ ràng mọi chuyện không đơn giản chút nào. Tuy nhiên có lẽ các bạn cũng sẽ nhận 
ra sự tinh tế trong bài tóan, đó là ở bậc của mỗi phương trình. Phương trình đầu tiên 
bậc 2 có lẽ chứa P. Thể nhưng nó không ở một dạng tích thuận tiện nào,trong khi 
phương trình thứ hai lại ở dạng tích và bậc 4,gấp đôi bậc 2. Nếu các bạn nhìn trong 
biểu thức S và P,bậc của P gấp đôi bậc của S,như vậy phải chăng phương trình thư 
nhất là S,thứ hai là P. Nếu vậy thì các giá trị x và y trong P là gì. Quan sát phương 
trình thứ hai các bạn có thể dễ dàng nhận ra sự tinh tế này, đó là ( 1)x x + và ( 1)y y + . 
Từ ý tưởng này ta đặt: 
( 1)
( 1)
a x x
b y y
= +
= +
Hệ đã cho tương đương với: 
8 6 a=2
 hay 
12 2 b=6
a b a
ab b
+ = ì =ì ì
Þí í í= =î îî
Như vậy ( , )x y là nghiệm của các phương trình sau: 
2
1 2
2
3 3
) 2 1 2
) 6 2 3
i t t t t
ii t t t t
+ = Þ = Ú = -
+ = Þ = Ú = -
Tóm lại nghiệm của hệ đã cho là: 
( , ) (1, 2);( 2,1);(2, 3); ( 3, 2)x y = - - - - 
B. Phương trình đối xứng lọai 2: 
( , ) 0.
( , ) 0.
f x y
f y x
=ì
í =î
Đối với dạng hệ phương trình này, ta có thể đưa về một dạng hệ tương đương sau: 
( , ) ( , ) 0
( , ) ( , ) 0.
f x y f y x
f x y f y x
- =ì
í + =î
Hệ phương trình mới mà các bạn thu được là một hệ đối xứng hay nửa đối xứng mà ta 
đã xét ở phần trên. Thật vậy nếu đặt 
( , ) ( , ) ( , )
( , ) ( , ) ( , )
h x y f x y f y x
g x y f x y f y x
= -ì
í = +î
. Ta sẽ đưa hệ về 
dạng: 
( , ) 0
( , ) 0
h x y
g x y
=ì
í =î
. Ở đó 
( , ) ( , )
( , ) ( , ).
h x y h y x
g x y g y x
= -ì
í =î
Có thể các bạn thấy rằng ( , )h x y không đối xứng hòan tòan (nửa đối xứng). Tuy 
nhiên ở đây có thể chấp nhận được bởi lẽ hệ ta ở dạng ( , ) 0.h x y = (Nếu các bạn vẫn 
thấy ray rứt vì điều này thì các bạn hãy viết dưới dạng 2 ( , ) 0h x y = ,chẳng phải 
2 ( , )h x y đối xứng đó sao .Chú ý thêm là tác giả chỉ muốn các bạn nắm bắt mối quan 
hệ của sự đối xứng và nửa đối xứng một cách rõ ràng hơn, chứ trong lúc giải bài tập 
các bạn chớ bình phương lên nhé. J) 
C. Phương trình đẳng cấp. 
( , ) (1)
( , ) (2)
f x y a
g x y b
=ì
í =î
 mà ở đó : 
( , ) ( , )
( , ) ( , )
k
k
f tx ty t f x y
g tx ty t g x y
ì =
í
=î
Ở đây điều kiện thứ hai các bạn có thể hiểu một cách đơn giản là các đơn thức trong 
các hàm f và g là đồng bậc (bậc của đơn thức hai biến x,y là tổng các bậc của x và 
y). Nhận xét này sẽ giúp cho các bạn nhận biết được phương trình đẳng cấp một cách 
dễ dàng hơn. 
Cách giải tổng quát ở đây là đưa về phương trình: 
( , ) ( , ) 0bf x y ag x y- = ,ở dó ,a b không đồng thời bằng 0. 
Nếu a,b đồng thời bằng 0. Ta giải riêng các phương trình ( , ) 0; ( , ) 0f x y g x y= = và 
so sánh nghiệm. 
Cách giải tương tự như phương trình ( , ) ( , ) 0bf x y ag x y- = nên các bạn có thể tham 
khảo bên dưới. 
Ta xét 2 trường hợp. 
) 0i x = là nghiệm của hệ phương trình. Điều này thì các bạn chỉ cần thế 0x = và giải 
phương trình một biến theo y. 
Trường hợp này ta thu được nghiệm 1( , ) (0, )...x y y= 
 )ii Trường hợp này ta sẽ tìm các nghiệm khác 1(0, )...y Chia hai vế cho 
kx trong đó 
k là bậc của f . Đặt xt
y
= . Ta đưa về phương trình theo ẩn t . Giải phương trình này 
ta tìm được tỉ số x
y
 .Sau đó thay x thành ty trong (1) . Giải phương trình này theo ẩn 
y, ta sẽ rút ra được các nghiệm của bài toán 0( , )oty y . 
Ví dụ: 
2 2
2 2
3 2 2 7
6 3 8
x xy y
x xy y
ì - + =
í
+ - = -î
Giải: 
Hệ đã cho tương đương với: 
2 2
2 2
24 16 16 56
7 42 21 56
x xy y
x xy y
ì - + =
í
+ - = -î
2 2
2 2
24 16 16 56
31 26 5 0(*)
x xy y
x xy y
ì - + =
Û í
+ - =î
Ta giải (*). 
2 231 26 5 0
(31 5 )( ) 0(**)
31 5 0(1)
0(2)
x xy y
x y x y
x y
x y
+ - =
Û - + =
- =é
Û ê + =ë
Từ đây ta có thể dễ dàng giải được bằng cách thế vào hệ phương trình ban đầu 
II.Các phương pháp giải hệ không mẫu mực: 
 A.Dùng bất đẳng thức : 
Dấu hiệu cho phép ta sử dụng phương pháp này là ta sẽ thấy số phương trình trong hệ 
ít hơn số ẩn . 
Ví dụ1 Giải hệ phương trình nghiệm dương : 
( )( ) ( ) ( )33
3
1 1 1 1
x y z
x y z xyz
+ + =ìï
í
+ + + = +ïî
Giải: 
 1 ( )VT x y z xy yz zx xyz= + + + + + + + ³ ( ) ( )3233 31 3 3 1xyz xyz xyz xyz+ + + = + 
Suy ra dấu bằng xảy ra khi x y z= = =1 
Ví dụ 2: Giải hệ phương trình : 
2 2
1 3 5 1 3 5
80
x x x y y y
x y x y
ì + + + + + = - + - + -ï
í
+ + + =ïî
Giải: Đk: 1; 5x y³ - ³ 
Giả sử 
6 
6
x y VT VP
x y VT VP
> - Þ >
< - Þ <
 Suy ra 6x y= - 
 Đến đây bạn đọc có thể tự giải 
Ví dụ 3: Giải hệ : 
9 3 4 2
3 4 2 1
1 1 1
8 . 1
x y z
x y z
x y z
ì + + =ï + + +í
ï =î
Giải: 
-Bài tóan này có số ẩn nhiều hơn số phương trình vì vậy ta sẽ sự dụng bất đẳng thức 
-Nhận xét : bậc của x,y,z khác nhau nên ta sử dụng Cauchy sao cho xuất hiện bậc 
giống hệ 
Ta có: 
1 2 4 2
1 1 1 1
x y z
x x y z
= + +
+ + + + 
Áp dụng Cauchy 8 số: 
1
1x
=
+
( ) ( ) ( )
2 4 2
8 2 4 281 1 1 1 1 1 1 1 1 1 1
x x y y y y z z x y z
x x y y y y z z x y z
+ + + + + + + ³
+ + + + + + + + + + +
Hòan tòan tương tự : 
( ) ( ) ( )
( ) ( ) ( )
3 3 2
8 3 3 2
3 4 1
8 3 4 1
1 8
1 1 1 1
1 8
1 1 1 1
x y z
y x y z
x y z
z x y z
³
+ + + +
³
+ + + +
Từ các bất đẳng thức thu được ta có: 
( ) ( ) ( ) ( ) ( ) ( )
24 32 16
9
83 4 2 24 32 16
9 3 4 2
1 1 1 8
1 1 1 1 1 1
8 1
x y z
x y z x y z
x y z
³
+ + + + + +
Þ £ 
dấu bằng xảy ra Û 1 1
1 1 1 9 8
x y z x y z
x y z
= = = Û = = =
+ + +
Ví dụ 4: giải hệ: 
4 2
2 2
697
81
3 4 4 0
x y
x y xy x y
ì + =ï
í
ï + + - - + =î
Giải: 
-Ví dụ này chúng tôi muốn giới thiệu công cụ xác định miền giá trị của x,y nhờ 
điều kiện có nghiệm của tam thức bậc hai 
-Xét phương trình bậc hai theo x: 
( )
( ) ( ) ( )( )
2 2
2 2
3 4 4 0
73 4 2 0 1 3 7 0 1
3
x x y y y
y y y y y
+ - + - + =
= - - - £ Û - - £ Û £ £ 
Tương tự xét phương trình bậc hai theo y thì ta có 40
3
x£ £ 
Suy ra: 
4 2
4 2 4 7 697
3 3 81
x y æ ö æ ö+ £ + =ç ÷ ç ÷
è ø è ø
4
3
xÞ = và 7
3
y = .Tuy nhiên thế vào hệ thì bộ nghiệm này không thỏa 
Vì vậy hệ phương trình vô nghiệm 
Ví dụ 5: Giải hệ: 
5 4 2
5 4 2
5 4 2
2 2
2 2
2 2
x x x y
y y y z
z z z x
ì - + =
ï
- + =í
ï - + =î
Ý tưởng của bài tóan này là ta phải đóan nghiệm của hệ là 1x y z= = = ,sau đó chứng 
minh là 1x > hay 1x < đều vô nghiệm 
Nếu 1x > ( )( )5 4 2 5 4 2 42 2 2 0 1 2 2z z z x z z z z z zÞ = - + > - + Þ > - + + 
 Do 4 2 2z z+ + luôn dương nên 1 z> 
 Tương tự 1 1y xÞ > Þ < Þ Vô lí 
Tương tự 1x < Þ vô lí.Vậy 1 1 1x y z= Þ = Þ = 
Bài tập luyện tập 
Giải các hệ: 
 1) 
2
2
2 4
x y z
xy z
+ + =ì
í
- =î
 2)
( )( )
( )( )
( ) ( )
2
2
2
1 2
1 2
1 2
x y z
y z x
z x y
ì = - +
ïï = - +í
ï = - +ïî
 3)
2
2
2
21 6 1988
21 6 1988
21 6 1988
y y
x
z z
y
x x
z
ì
+ =ï
ï
ï + =í
ï
ï
+ =ï
î
 4)
2
2
2
2
2
2
2
1
2
1
2
1
x y
x
y z
y
z x
z
ì
=ï +ï
ï
=í +ï
ï
=ï
+î
 5)
2 2 2
2 2 2
3
9
x y z
x y z
y z x
ì + + =
ï
í
+ + =ï
î
B.Đặt ẩn phụ: 
Đôi khi bài tóan sẽ phức tạp nếu ta giải hệ với ẩn (x,y,z,) nhưng chỉ sau một phép 
đặt ( ), ( ), ( ),....a f x b f y c f z= = = 
Ví dụ 1:Giải hệ 
12
5
18
5
36
13
xy
x y
yz
y z
xz
x z
ì =ï +ï
ï =í +ï
ï
=ï
+î
Hướng dẫn: Đặt 1 1 1, , .a b c
x y z
= = = 
Ví dụ 2: Giải hệ: 
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
( ) (3 1)
( ) (4 1)
( ) (5 1)
x y z x x y z
y x z y y x z
z x y z z x y
ì + = + +
ï + = + +í
ï + = + +î
Nếu 0x = dễ dàng suy ra được: 0y z= = .Như vậy ( , , ) (0,0,0)x y z = là một nghiệm 
của hệ. 
Ta tìm các nghiệm khác ( )0,0,0 
Chia hai vế cho 2 2 2x y z ta thu được hệ tương đương: 
2
2
2
2
2
2
1 13
1 14
1 15
y z
yz x x
x z
xz y y
x y
xy z z
ìæ ö+
= + +ïç ÷
ïè ø
ï
+ïæ ö = + +íç ÷
è øï
ïæ ö+ï = + +ç ÷ïè øî
Ta lại đặt 1 1 1; ;a b c
x y z
= = = ta nhận được: 
2 2
2 2
2 2
( ) 5(1)
( ) 3(2)
( ) 4(3)
a b c c
b c a a
a c b b
ì + = + +
ï + = + +í
ï + = + +î
Lấy 
( )(2) (3) ( ) 2( ) 1 1
(1) (2) ( )(2( ) 1) 1
a b a b c
b c a b c
- Þ - + + + =
- Þ - + + + =
Từ đây suy ra a b b c- = - 2a c bÞ + = 
Thay vào (2) ta được 23 4 0b b- + = . 
Từ đây các bạn có thể dễ dàng giải tiếp bài toán. 
Ví dụ 3: Giải hệ 
3
3
(6 21 ) 1
( 6) 21
x y
x y
ì + =
í
- =î
Nếu giải hệ với ẩn ( , )x y thì ở đây ta thật khó để thấy đwocj hướng giải. 
Nhưng mọi chuyện sẽ rõ ràng khi ta đặt 1 .x
z
= 
3
3
21 6
21 6
z y
y z
ì = +
í
= +î
Đây là hệ đối xứng mà ta có thể dễ dàng tìm ra đước hướng giải. J 
Sau đây là bài tập áp dụng dành cho bạn đọc: 
Bài tập luyện tập. 
Bài 1: Giải hệ: 
2 22 2 2 6
( 1) 4
x x y
xy xy x y
ì + + + =
í
+ + + =î
Bài 2: Giải hệ: 
3 3
3 3
3 3
3 3
( ) 12
( ) 12
( ) 12
( ) 12
x y z t
y z t x
z t x y
t x y z
ì + + =
ï + + =ï
í
+ + =ï
ï + + =î
C.Tính các đại lượng chung 
Ý tưởng của phương pháp này là tính các đại lượng trong đó. 
Ví dụ 1:Giải hệ: 
2 2 4
2 3 6 (*)
3 5
xy y x
yz z y
xz z x
+ + + =ì
ï + + =í
ï + + =î
( 1)( 2) 6
(*) ( 2)( 3) 12 ( 1)( 2)( 3) 24
( 3)( 1) 8
x y
y z x y z
z x
+ + =ì
ïÛ + + = Þ + + + = ±í
ï + + =î
Từ đây các bạn có thể có thể giải tiếp một cách dễ dàng. 
Ví dụ 2:Giải hệ: 
 2 2
3 3
2(1)
3(2)
5(3)
9(4)
u v
ux vy
ux vy
ux vy
+ =ì
ï + =ï
í + =ï
ï + =î
Giải: 
Nhân x y+ vào (3) 
3 3 2 2 5( )
9 3 5( )
ux vy ux y vxy x y
xy x y
Þ + + + = +
Þ + = +
 Nhân x y+ vào (2) 
 2( ) 3uy vx x yÞ + = + - 
 Nhân 2 2x y+ vào (2) 
 [ ]2 23( ) 9 ( ) 9 2( ) 3x y xy uy vx xy x y+ = + + = + + - 
Đặt ;a x y b xy= + = . 
Đến đây các bạn có thễ dễ dàng giải tiếp J. 
Bài tập luyện tập 
Bài 1: Giải hệ 
 2 2 2 2
2 2 2 2
50
24
0.
x y z t
x y z t
xz yt
x y z t
ì + + + =
ï - + - = -ï
í
=ï
ï - + + =î
Bài 2:Giải hệ 
2
2
2
y xz b
z xy c
x yz a
ì - =
ï - =í
ï - =î
 ( , ,a b c là những hằng số) 
Bài 3:Giải hệ 
2
2
2
( )
( )
( )
ax by x y
by cz y z
cz ax z x
ì + = -
ï + = -í
ï + = -î
 ( , ,a b c là những hằng số) 
Bài 4:Giải hệ. 
3 2
3 2
3 2
( ) 2
( ) 30
( ) 16
x x y z
y y z x
z z x y
ì + - =
ï + - =í
ï + - =î
D.Nhân liên hợp. 
Phương pháp này chủ yếu bỏ dâu căn thức đễ dễ tính toán hay để xuất hiện những đại 
lượng có thể đặt ẩn phụ. 
Ví dụ 1:Giải hệ: 
4
(1)
5 5 6
x y
x y
ì + =ï
í
+ + + =ïî
Giải: 
Ta có: 
5 5 13
(1)
5 5 2
5 5 13
5 5 2
5 5
x x y y
x x y y
x x y y
x x y y
ì + + + + + =ïÛ í
+ - + + - =ïî
ì + + + + + =
ïÛ í + =ï + + + +î
Đặt 
5
5
u x x
v y y
= + +
= + +
Ta suy ra: 
10
1 1 2
5
10
25
5 2.
u v
u v
u v
uv
u v x y
+ =ì
ï
í
+ =ïî
+ =ì
Þ í =î
Þ = = Þ = =
Ví dụ 2: Giải hệ: 
53 2 4
42
53 2
42
y
y x
x
y x
ìæ ö
- =ïç ÷+ïè ø
í
æ öï + =ç ÷ï +è øî
Giải: 
Từ hệ ta suy ra điều kiện: 
, 0x y > 
Hệ đã cho tương đương với: 
2 2
4 2 6
2
10 2 4
42 2
15 1 2
42
15 ( 2 )( 42 )
25 84 0
(3 )( 28 ) 0
3
28 0
y x
y x x y
y x x y
xy y x y x
y xy x
x y y x
x y
y x
ì + =ï
ï
í
ï = -
ï +î
Þ = -
+
Þ = - +
Þ + - =
Þ - + =
=é
Þ ê + =ë
Trường hợp thứ hai ta loại do không thỏa điều kiện , 0x y > . 
Thay vào hệ ban đầu ta thu được nghiệm sau: 
 5 2 6 5 2 6( , ) ,
27 9
x y
æ ö+ +
= ç ÷ç ÷
è ø
Bài tập luyện tập 
Bài 1: Giải hệ 
6 1 5
1 6 5
x y
x y
ì + + + =ï
í
+ + + =ïî
Bài 2: Giải hệ 
1 5 2
( 1)( 1) 1
x y xy
x y
ì- + + + = -ï
í
- - =ïî
Bài 3: Giải hệ 
1 1
2 2
2 ( 1)( 1) 0
x yx x y y
y x x y
ì + + - = + + -ï
í
ï + + + + =î
Kết thúc bài viết là phần bài tập tổng hợp các mục về hệ phương trình mà ta đã xem 
xét: 
III)Bài tập tổng hợp. 
Bài 1: Giải các hệ phương trình sau: 
 a)
2 2 6.
5.
x y xy
xy x y
ì + =
í
+ + =î
 b)
4 2 2 4
2 2
21
7
x x y y
x xy y
ì + + =
í
- + =î
Bài 2: Giải hệ phương trình sau: 
2 2 8
( 1) ( 1) 12
x y x y
x x y y
ì + + + =
í
+ + + =î
Bài 3:Giải hệ phương trình sau: 
3 2 2 32 2 0
2.
x y x x y xy y
x y
ì + + + + + =ï
í
= -ïî
Bài 4:Giải hệ phương trình sau: 
 3 3
6
126
x y
x y
- =ì
í - =î
Bài 5:Giải hệ phương trình sau: 
2 2 2
2 1 2
x y a
xy a
ì + =
í
+ =î

Tài liệu đính kèm:

  • pdfHe Phuong Trinh.pdf