Chuyên đề số 1: Khảo sát hàm số và ứng dụng

Chuyên đề số 1: Khảo sát hàm số và ứng dụng

Chuyên đề số 1: Khảo sát hàm số và ứng dụng

Một số kiến thức cần nhớ

- Phương pháp khảo sát hàm số

- Nội dung các bài toán tiếp tuyến, giới thiệu nội dung 3 bài toán tiếp tuyến

- Bài toán sự tương giao giữa các đồ thị của hàm số, điều kiện để 2 đường cong tiếp xúc

- Các bài toán về cực trị của hàm số: Hàm đa thức, hàm phân thức phương trình đường thẳng đi qua các điểm cực trị

- Xây dựng điều kiện để hàm số đồng biến hay nghịch biến trên một khoảng hay một đoạn

 

doc 6 trang Người đăng ngochoa2017 Lượt xem 1770Lượt tải 0 Download
Bạn đang xem tài liệu "Chuyên đề số 1: Khảo sát hàm số và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề số 1: Khảo sát hàm số và ứng dụng
Một số kiến thức cần nhớ
Phương pháp khảo sát hàm số
Nội dung các bài toán tiếp tuyến, giới thiệu nội dung 3 bài toán tiếp tuyến
Bài toán sự tương giao giữa các đồ thị của hàm số, điều kiện để 2 đường cong tiếp xúc
Các bài toán về cực trị của hàm số: Hàm đa thức, hàm phân thức phương trình đường thẳng đi qua các điểm cực trị
Xây dựng điều kiện để hàm số đồng biến hay nghịch biến trên một khoảng hay một đoạn
Các ví dụ
Bài 1: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số với m = 0
Tìm m để hàm số đồng biến trên khoảng (1;+Ơ)
Bài 2, Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số khi m=1
Xác định m để hàm số (1) nghịch biến trên đoạn [-1;0]
Bài 3: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số m=1
Tìm m để hàm số có 2 điểm cực trị nằm về 2 phía của trục tung
Bài 4: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số khi m=1
Tìm m để hàm số (1) có 2 điểm cực trị A,B . CMR khi đó đường thẳng AB song song với đường thẳng 2x-y-10=0
Bài 5: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số khi m=1
Tìm m để hàm số đã cho đạt cực tiểu tại điểm có hoành độ x=0
Tìm k để hệ sau có nghiêm 
Bài 6: Cho hàm số
Cho m =1/2 Khảo sát sự biến thiên của đồ thị của hàm số , Viết phương trình tiếp tuyến của đồ thị hàm số biết rằng tiếp tuyến đó song song với đường thẳng D: y=4x+2
Tìm m thuộc khoảng (0;5/6) sao cho hình phẳng giới hạn bởi đồ thị hàm số (1) và các đường thẳng x=0, x=2, y=0 có diện tích bằng 4
Bài 7: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số m=-1
Tìm m để đường thẳng y=-x-4 cắt đồ thị hàm số (1) tại 2 điểm đối xứng nhau qua đường thẳng y=x
Bài 8: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số 
 Tìm toạ độ 2 điểm A,B nằm trên (C ) và đối xứng nhau qua đường thẳng x-y+4=0
Bài 9: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm 
Tìm m để đường thẳng D:y=2x+m cắt (C ) tại 2 điểm phân biệt A,B sao cho tiếp tuyến của (C ) tại A, B song song với nhau
Tìm tất cả các điểm M thuộc (C ) sao cho khoảng cách từ M đến giao điểm 2 đường tiệm cận là ngắn nhất
Bài 10: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số
 Gọi I là giao điểm 2 đường tiệm cận ủa (C ) Tìm điểm M thuộc (C) sao cho tiếp tuyến tại M vuông góc với dường thẳng IM
Bài 11 Cho hàm số
Cho điểm A(0;a). Xác định a để từ A kẻ được 2 tiếp tuyến tới (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía đối với trục Ox
HD a# -1 va a> -2 có 2 nghiệm phân biêt 
	Y1.y2-2/3 và a khác 1
Bài 12, Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số m =-1
Tìm m để đồ thị hàm số (1) cắt trục hoành tại 2 điểm phân biệt có hoành độ dương
Cho hàm số Tìm m để đồ thị của hàm số cắt trục hoành tại 4 điểm phân biệt
 Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số 
 Xác định m để đường thẳng y=m cắt đồ thị hàm số (1) tại 2 điểm A,B sao cho AB=1
Bài 13: Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số khi m=1
 Tìm m để đồ thị của hàm số (1) có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân
Bài 14 , Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số khi m=1
CMR với m bất kỳ đồ thị ( Cm ) luôn luôn có điểm cực trị và khoảng cách giữa 2 điểm đó bằng 
Bài 15, Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số
Tìm m để hàm số có cực trị và tính khoảng cách giữa hai điểm cực trị của đồ thị của hàm số 
Bài 16, Cho hàm số
Tìm trên đường thẳng y= - 2 các điểm từ đó nhìn đường cong dưới một góc vuông
ĐS M(55/27;-2)
Bài 17, Cho hàm số 
Khảo sát sự biến thiên của đồ thị của hàm số khi
Một đường thẳng thayđổi song song với đường thẳng y=1/2.x và cắt đồ thị hàm số đã cho tại M,N .Tìm quỹ tích trung điểm I của MN
Biện luận theo tham số m số nghiệm phương trình 
Bài 18, Cho hàm số
Giả sử đồ thị cắt trục hoành tại 4 điểm phân biệt .Hãy xác định m sao cho hình phẳng giới hạn bởi đồ thị (C) và trục hoành có diện tích phần phía trên và phần phía dưới đối với trục hoành bằng nhau
HD: ĐK cắt 0<m<4 vẽ minh hoạ gọi x1, x2, x3, x4, là nghiệm
	Strên= Sduói
 Vận dụng tính chất đối xứng , định ly viét m=20/9
Bài 18, Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số 
Xác định m để (d) y=m(x-5) + 10 cắt đồ thị (C ) tại 2 điểm phân biệt nhận A(5,10) là trung điểm 
Bài 19, Cho hàm số
Khảo sát sự biến thiên của đồ thị của hàm số m=1
Tìm m để hàm số có cực trị và khoảng cách giữa điểm CĐ,CT nhỏ hơn 
Chuyên đề số 2: Đại số
I. Hệ phương trình phương trình đại số
Một số dạng hệ phương trình thường gặp
Hệ phương trình bậc nhất : cách tính định thưc
Các ví dụ
Bài 1: Một số hệ dạng cơ bản 
Cho hệ phương trình 
Giải hệ khi m=12
Tìm m để hệ có nghiệm
Cho hệ phương trình 
Tìm a để hệ phương trình có đúng 2 nghiệm phân biệt
Cho hệ phương trình 
Tìm m để hệ có nghiệm 
Cho hệ phương trình 
Tìm m để hệ có nghiệm duy nhất
Giải hệ khi m=6
Tìm m để hệ có nghiệm 
Bài 2: 
 (KB 2003)
 HD: 
 Th1 x=y suy ra x=y=1
 TH2 chú ‏‎y: ‏‎ x>0 , y> 0 suy ra vô nghiệm 
Bài 3: 
 HD: Nhóm nhân tử chung sau đó đặt 
	S=2x+y và P= 2x.y 
Đs : (1,3) và (3/2 , 2)
Bài 4: 
 HD: từ (2) : -1 ≤ x , y ≤ 1 hàm số :
 trên [-1,1] áp dụng vào phương trình (1) 
Bài 5: CMR hệ phương trình sau có nghiệm duy nhất 
 HD: 
 xét lập BBT suy ra KQ
Bài 6: 
 HD Bình phương 2 vế, đói xứng loại 2
Bài 7: xác định a để hệ có nghiệm duy nhất
 HD sử dụng ĐK cần và đủ a=8	
Bài 8: 
 HD : Rut ra 
 Cô si 
 theo (1) suy ra x,y
Bài 9: (KB 2002)
	HD: từ (1) đặt căn nhỏ làm nhân tử chung (1;1) (3/2;1/2)
Bài 10: Tìm a để hệ có nghiệm
	HD: từ (1) đặt được hệ dối xứng với u, - v
Chỉ ra hệ có nghiệm thì phương trình bậc hai tương ứng có 2 nghiệm trái dấu
Bài tập áp dụng
 KD 2003
 HD: tách thành nhân tử 4 nghiệm
 Tìm m để hệ có nghiệm 
 dặt t=x/y có 2 nghiệm
 đặt X=x(x+2) và Y=2x+y
 đổi biến theo v,u từ phương trình số (1)
Đặt x=1/z thay vào được hệ y,z DS (-1/2,3) (1/3,-2)
 (KA 2003)
 HD: x=y V xy=-1
	CM 	vô nghiệm bằng cách tách hoặc hàm số kq: 3 nghiệm
 xác định a để hệ có nghiệm duy nhất HD sử dụng ĐK cần và đủ
 HD bình phương 2 vế 
HD nhân 2 vế của (1) với 
 14) Tìm m để hệ sau có nghiệm 
 ĐS m>=4
 15)Tìm a để hệ sau có nghiệm 
	HD: 
II. Phương trình và bất phương trình phương trình đại số 
Một số dạng phương trình và bất phương trình thường gặp
Một số ví dụ
Bài 1: Tìm m để 
 Tìm m để bất phương trình trên nghiệm đúng với mọi x
 HD: sử dụng hàm số hoặc tam thức : m≤-2
	TH1: a+1≤0 Hệ vô nghiệm
	TH2: a+1>0 Ve đồ thị (2) là đường tròn còn (1) là miền gạch chéo : a≥-1/2
Bài 3: Giải các phương trình ,bất phương trình sau
 : x=0
 tích 2 nhân tử bằng 1 suy ra cách giải
5) Giải bất phương trình 
HD 
nhân 2 vế với biểu thức liên hợp của VT 
Biến đổi về BPT tích chú ‏‎y ĐK
6) Giải bất phương trình 
HD Đặt AD BĐT cô si suy ra ĐK
7) Giải bất phương trình 
HD
Xét 2 trường hợp chú y DK x>=-1 
Trong trường hợp x>=4 tiến hành nhân và chia cho biểu thức liên hợp ở mẫu ở VT
8) Cho phương trình 
Tìm m để phương trình có nghiệm
HD
Bình phương 2 vế chú ‏‎y ĐK 
Đặt t= tích 2 căn thớc Tìm ĐK t 
Sử dụng BBT suy ra KQ
9)Tìm m để phương trình sau có nghiệm 
Bài tập áp dụng
ĐS a=-1 và a=3
Tìm m để bất phương trình sau có nghiệm
HD đặt coi là phương trình bậc hai ẩn t 
 Cho phương trình 
Giải phương trình khi m=6
Tìm m để phương trình có nghiệm
 Tìm a để với mọi x
 ĐS a>=4 V a<=0
11)Tìm m để bất phương trình sau có nghiệm với mọi x thuộc [-1/2;3]
	HD Đặt t= Từ miền xác đinh của x suy ra 
	Biến đổi thành f(t)=t2+t>m+2
	Tìm miền giá trị của VT m<-6
13) Tìm a nhỏ nhất để bất phương trình sau thoả mãn với mọi x thuộc [0;1]
	HD Đặt t=x2+x dùng miền giá trị suy ra a=-1
12) Tìm m để bất phương trình sau có nghiệm 
	HD -1<m<1
13) Tìm m để bất phương trình sau có nghiệm với mọi x 
	HD Đặt t=cosx BBT 0<=m<=2
16) Tìm m để phương trình sau có nghiệm trên [-p/2; p/2] 
14) Tìm GTLN,GTNN của hàm 
 HD : 3 và 1/27
Tìm GTLN,GTNN của hàm HD : 3 và 1/27
15)Tìm m để phương trình sau có nghiệm
16) Tìm m để bất phương trình sau có nghiệm với mọi x thuộc [-1/2;3]
	HD Đặt t= Từ miền xác đinh của x suy ra 
	Biến đổi thành f(t)=t2+t>m+2
	Tìm miền giá trị của VT m<-6
17): Tìm a nhỏ nhất để bất phương trình sau thoả mãn với mọi x thuộc [0;1]
	HD Đặt t=x2+x dùng miền giá trị suy ra a=-1
18) Tìm m để bất phương trình sau có nghiệm 
	HD -1<m<1
19): Tìm m để bất phương trình sau có nghiệm với mọi x 
	HD Đặt t=cosx BBT 0<=m<=2
20)Tìm m để phương trình sau có nghiệm trên [-p/2; p/2] 

Tài liệu đính kèm:

  • docchuyen de pthptbpt Dai so cac bai toan lq kshs.doc