Chuyên đề: Phương trình tiếp tuyến ( cơ bản )

Chuyên đề: Phương trình tiếp tuyến ( cơ bản )

Dạng 1: PTTT của hàm số (C): y = f(x) tại điểm M0(x0; y0)

Bước 1: PTTT cần tìm có dạng: y – y0 = (x0)(x – x0) (*)

Bước 2: Tính (x) => Tính (x0)

Bước 3: Thay x0, y0 và (x0) vào (*)

 Dạng 2: PTTT của (C): y = f(x) biết hệ số góc k cho trước

Bước 1: Tính (x)

Bước 2: Giải phương trình (x0) = k nghiệm x0

Bước 3: Tính y0 = f(x0)

Bước 4: Thay x0, y0 và k = (x0) vào PT: y – y0 = (x0)(x – x0)

 

doc 3 trang Người đăng haha99 Lượt xem 1124Lượt tải 0 Download
Bạn đang xem tài liệu "Chuyên đề: Phương trình tiếp tuyến ( cơ bản )", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ: PHƯƠNG TRÌNH TIẾP TUYẾN ( Cơ bản )
	Dạng 1: PTTT của hàm số (C): y = f(x) tại điểm M0(x0; y0)
Bước 1: PTTT cần tìm có dạng: y – y0 = (x0)(x – x0) (*) 
Bước 2: Tính (x) => Tính (x0) 
Bước 3: Thay x0, y0 và (x0) vào (*)
 Dạng 2: PTTT của (C): y = f(x) biết hệ số góc k cho trước
Bước 1: Tính (x) 
Bước 2: Giải phương trình (x0) = k nghiệm x0
Bước 3: Tính y0 = f(x0) 
Bước 4: Thay x0, y0 và k = (x0) vào PT: y – y0 = (x0)(x – x0) 
Lưu ý: + Tieáp tuyeán // ñöôøng thaúng y = a.x + b => heä soá goùc k = a
 + Tieáp tuyeán ^ ñöôøng thaúng y = a.x + b => heä soá goùc k = - 
 	( + Hai ñöôøng thaúng vuoâng goùc nhau : k1.k2 = -1 
 + Hai ñöôøng thaúng song song nhau : k1 = k2 )
BÀI TẬP:
Bài 1: (TN bổ túc 2007) (3,5 đ)Cho hàm số (C): y = x3 - 3x + 2 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Viết phương trình tiếp tuyến tại điểm I(2; 4).
Bài 2: (TN 2007 phân ban) (3,5 đ )Cho hàm số (C): y = - x3 + 3x2 - 2 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Viết phương trình tiếp tuyến tại điểm uốn của (C).
Bài 3: (TN lần II 2007) (3,5 đ )Cho hàm số (C): y = 
a) Khảo sát và vẽ đồ thị hàm số (C)
b) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung.
Bài 4 (TN2006 Phân ban) (3,5 đ ) Cho hàm số (C): y = x4 - 2x2 + 1 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Viết Phương trình (C) tại điểm cực đại của (C).
Bài 5: (TN 2009) (3,0 đ ) Cho hàm số (C): y = 
a) Khảo sát và vẽ đồ thị hàm số (C)
b) Viết phương trình tiếp tuyến của (C) có hệ số góc bằng -5.
Bài 6: Cho hàm số (C): y = x3 – 3x2 + 4 
a) Khảo sát và vẽ đồ thị hàm số (C)
b) Viết phương trình tiếp tuyến của (C) song song với đường thẳng y = .
ĐS: y = ; y = 
Bài 7: Cho hàm số (C): y = 
a) Khảo sát và vẽ đồ thị hàm số (C).
b) Viết phương trình tiếp tuyến của (C) vuông góc với đường phân giác phần tư thứ nhất
Bài 8: Cho hàm số (C): y = -x3 + 3x + 2 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Dựa vào đồ thị (C), biện luận theo m số nghiệm của phương trình: x3 – 3x – 1 + m = 0
ĐS: * m > 4: 1 n0; * m = 4: 2 n0; * 0 < m < 4: 3 n0; * m = 0: 2 n0; * m < 0: 1 n0
c) Viết phương trình tiếp tuyến tại điểm I(0; 2). ĐS: y = 3x + 2
d) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C)
HD: PT đt đi qua 2 điểm A(xA; yA) và B(xB; yB) có dạng: . ĐS: y = 2x + 2
Bài 9: Cho hàm số (C): y = x3 + 3x2 + 1
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Dựa vào đồ thị (C), biện luận theo k số nghiệm của phương trình: x3 + 3x2 – k = 0
ĐS: * k > 4: 1 n0; * k = 4: 2 n0; * 0 < k < 4: 3 n0; * k = 0: 2 n0; * k < 0: 1 n0
c) Viết phương trình tiếp tuyến tại điểm có hoành độ bằng -1
HD: Thế x = -1 vào (C) y = 3: M(-1; 3). ĐS: y = -3x
d) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C)
ĐS: y = -2x + 1
Bài 10: Cho hàm số (C): y = x4 – 2x2 – 3 
a) Khảo sát và vẽ đồ thị hàm số (C)
b) Viết phương trình tiếp tuyến của (C), biết hệ số góc của tiếp tuyến là 24.
 ĐS: y = 24x – 43 
Bài 11: Cho hàm số (C): y = - x4 + 2x2 + 1 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Biện luận theo m số nghiệm của phương trình: -x4 + 2x2 + 1 – m = 0
ĐS: * m > 2: vô n0; * m = 2: 2 n0; * 1 < m < 2: 4 n0; * m = 1: 3 n0; * m < 1: 2 n0
c) Viết phương trình tiếp tuyến tại điểm có tung độ bằng 2
HD: Thế y = 2 vào (C) x =1: M(-1; 2), N(1; 2). ĐS: y = 2
HD: Đường phân giác phần tư thứ nhất là: y = x. ĐS: y = -x và y = -x + 8
Bài 12: Cho hàm số (Cm): y = 2x3 + 3(m – 1)x2 + 6(m – 2)x – 1 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) khi m = 2
b) Với giá trị nào của m, đồ thị của hàm số (Cm) đi qua điểm A(1; 4). ĐS: m = 2
c) Viết phương trình tiếp tuyến của hàm số (C) đi qua điểm B(0; -1). ĐS: y = -1; y = 
Bài 13: Cho hàm số (Cm): y = 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C2) 
b) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên mỗi khoảng xác định của nó 
HD: Chứng minh tử thức của y’ > 0 suy ra y’ > 0(đpcm)
c) Xác định m để tiệm cận đứng của đồ thị đi qua A(-1; ). ĐS: m = 2
d) Viết phương trình tiếp tuyến của hàm số (C2) tại điểm (1; ). 
Bài 14( Khối D.2005) Cho (Cm): và M (Cm) có hoành độ x = 1. Tìm m để tiếp tuyến của (Cm) tại M là song song với đường thẳng d: 5x – y = 0.

Tài liệu đính kèm:

  • docChuyen de tiep tuyencb.doc