Chuyên đề 1: PHƯƠNG TRÌNH ĐẠI SỐ
& BẤT PHƯƠNG TRÌNH ĐẠI SỐ
TÓM TẮT GIÁO KHOA
CÁC HẰNG ĐẲNG THỨC CƠ BẢN
Chuyên đề 1: PHƯƠNG TRÌNH ĐẠI SỐ & BẤT PHƯƠNG TRÌNH ĐẠI SỐ TÓM TẮT GIÁO KHOA CÁC HẰNG ĐẲNG THỨC CƠ BẢN 1. 2. 3. 4. 5. 6. 7. Áp dụng: Biết và . Hãy tính các biểu thức sau theo S và P A. PHƯƠNG TRÌNH ĐẠI SỐ I. Giải và biện luận phương trình bậc nhất: 1. Dạng : ax + b = 0 (1) 2. Giải và biện luận: Ta có : (1) ax = -b (2) Biện luận: Nếu a 0 thì (2) Nếu a = 0 thì (2) trở thành 0.x = -b * Nếu b 0 thì phương trình (1) vô nghiệm * Nếu b = 0 thì phương trình (1) nghiệm đúng với mọi x Tóm lại : a 0 : phương trình (1) có nghiệm duy nhất a = 0 và b 0 : phương trình (1) vô nghiệm a = 0 và b = 0 : phương trình (1) nghiệm đúng với mọi x Áp dụng: Ví dụ : Giải và biện luận các phương trình sau: 1) 2) 3. Điều kiện về nghiệm số của phương trình: Định lý: Xét phương trình ax + b = 0 (1) ta có: (1) có nghiệm duy nhất a 0 (1) vô nghiệm (1) nghiệm đúng với mọi x Áp dụng: Ví dụ : 1) Với giá trị nào của a, b thì phương trình sau nghiệm đúng với mọi x 2) Với giá trị nào của m thì phương trình sau có nghiệm II.Giải và biện luận phương trình bậc hai: 1. Dạng: (1) 2. Giải và biện luận phương trình : Xét hai trường hợp Trường hợp 1: Nếu a thì (1) là phương trình bậc nhất : bx + c = 0 b 0 : phương trình (1) có nghiệm duy nhất b = 0 và c 0 : phương trình (1) vô nghiệm b = 0 và c = 0 : phương trình (1) nghiệm đúng với mọi x Trường hợp 2: Nếu a0 thì (1) là phương trình bậc hai có Biệt số ( hoặc ) Biện luận: F Nếu thì pt (1) vô nghiệm F Nếu thì pt (1) có nghiệm số kép ( ) F Nếu thì pt (1) có hai nghiệm phân biệt ( ) Áp dụng: Ví dụ 1: Giải các phương trình sau: Ví dụ 2: Giải và biện luận phương trình : 3. Điều kiện về nghiệm số của phương trình bậc hai: Định lý : Xét phương trình : (1) F Pt (1) vô nghiệm hoặc F Pt (1) có nghiệm kép F Pt (1) có hai nghiệm phân biệt F Pt (1) có hai nghiệm F Pt (1) nghiệm đúng với mọi x Đặc biệt Nếu pt(1) có hệ số a,c thoả a.c < 0 thì pt(1) luôn có hai nghiệm phân biệt. Áp dụng: Ví dụ 1: Với giá trị nào của m thì phương trình sau có hai nghiệm phân biệt: Ví dụ 2: Với giá trị nào của m thì phương trình sau có ba nghiệm phân biệt: 4. Định lý VIÉT đối với phương trình bậc hai: F Định lý thuận: Nếu phương trình bậc hai : ( ) có hai nghiệm x1, x2 thì F Định lý đảo : Nếu có hai số mà và thì là nghiệm của phương trình x2 - Sx + P = 0 F Ý nghĩa của định lý VIÉT: Cho phép tính giá trị các biểu thức đối xứng của các nghiệm ( tức là biểu thức chứa x1, x2 và không thay đổi giá trị khi ta thay đổi vai trò x1,x2 cho nhau .Ví dụ: ) mà không cần giải pt tìm x1, x2 , tìm hai số khi biết tổng và tích của chúng . Chú ý: F Nếu pt (1) có các hệ số thoả mãn a+b+c=0 thì pt (1) có hai nghiệm là F Nếu pt (1) có các hệ số thoả mãn a-b+c=0 thì pt (1) có hai nghiệm là Áp dụng: Ví dụ 1 : Cho phương trình: (1) Với giá trị nào của m thì pt (1) có hai nghiệm phân biệt x1, x2 thỏa mãn Ví dụ 2: Cho phương trình: (1) Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn Ví dụ 3: Cho phương trình: (1) Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn 5. Dấu nghiệm số của phương trình bậc hai: Dựa vào định lý Viét ta có thể suy ra định lý sau: Định lý: Xét phương trình bậc hai : (1) ( ) F Pt (1) có hai nghiệm dương phân biệt F Pt (1) có hai nghiệm âm phân biệt F Pt (1) có hai nghiệm trái dấu Áp dụng: Ví dụ : Với giá trị nào của m thì phương trình sau có hai nghiệm dương phân biệt: II. Phương trình trùng phươngï: 1.Dạng : (1) 2.Cách giải: F Đặt ẩn phụ : t = x2 (). Ta được phương trình: (2) Giải pt (2) tìm t. Thay t tìm được vào t = x2 để tìm x Tùy theo số nghiệm của phương trình (2) mà ta suy ra được số nghiệm của phương trình (1) Áp dụng: Ví du 1ï: Giải phương trình : với Ví dụ 2: Với giá trị nào của m thì phương trình sau có 4 nghiệm phân biệt: III . Phương trình bậc ba: 1. Dạng: (1) () 2 .Cách giải: Áp dụng khi biết được một nghiệm của phương trình (1) FBước 1: Nhẩm một nghiệm của phương trình (1). Giả sử nghiệm là x = x0 FBước 2: Sử dụng phép CHIA ĐA THỨC hoặc sơ đồ HOÓCNE để phân tích vế trái thành nhân tử và đưa pt (1) về dạng tích số : (1) (x-x0)(Ax2+Bx+C) = 0 FBước 3: Giải phương trình (2) tìm các nghiệm còn lại ( nếu có). Áp dụng: Ví dụ 1: Giải các phương trình sau: a) b) Ví dụ 2: Với giá trị nào của m thì phương trình sau có ba nghiệm phân biệt Chú ý Ta có thể áp dụng phương pháp phân tích đa thức thành nhân tử bằng kỷ thuật sử dụng sơ đồ HOÓCNE, để giải các phương trình đa thức bậc cao (với điều kiện nhẩm được một nghiệm của đa thức) Ví dụ: Giải phương trình: IV. PHƯƠNG TRÌNH BẬC BỐN QUY VỀ BẬC HAI BẰNG PHÉP ĐẶT ẨN PHỤ 1.Dạng I: F Đặt ẩn phụ : t = x2 2. Dạng II. trong đó a+b = c+d F Đặt ẩn phụ : t = (x+a)(x+b) 3.Dạng III: F Đặt ẩn phụ : t = 4.Dạng IV: Chia hai vế phương trình cho x2 F Đặt ẩn phụ : t = B. BẤT PHƯƠNG TRÌNH ĐẠI SỐ I. Bất phương trình bậc nhất: 1. Dạng : (hoặc ) 2. Giải và biện luận: Ta có : Biện luận: Nếu thì Nếu thì Nếu thì (2) trở thành : * thì bpt vô nghiệm * thì bpt nghiệm đúng với mọi x Áp dụng: Ví dụ1: Giải và biện luận bất phương trình : Ví dụ 2: Giải hệ bất phương trình sau: Ví dụ 3: Với giá trị nào của m thì hệ phương trình sau có nghiệm: II. Dấu của nhị thức bậc nhất: 1. Dạng: 2. Bảng xét dấu của nhị thức: x ax+b Trái dấu với a 0 Cùng dấu với a Áp dụng: Ví dụ : Xét dấu các biểu thức sau: III. Dấu của tam thức bậc hai: 1. Dạng: 2. Bảng xét dấu của tam thức bậc hai: x f(x) Cùng dấu a 0 Trái dấu a 0 Cùng dấu a x f(x) Cùng dấu a 0 Cùng dấu a x f(x) Cùng dấu a 3. Điều kiện không đổi dấu của tam thức: Định lý: Cho tam thức bậc hai: Áp dụng: Ví dụ1 : Cho tam thức Tìm m để Ví dụ 2: Với giá trị nào của m thì thỏa với mọi IV. Bất phương trình bậc hai: 1. Dạng: ( hoặc ) 2. Cách giải: Xét dấu tam thức bậc hai ở vế trái rồi chọn nghiệm thích hợp. Áp dụng: Ví dụ1 : Giải các hệ bất phương trình: a) b) Ví dụ 2 : Giải bất phương trình: Ví dụ 3: Với giá trị nào của m thì phương trình sau có hai nghiệm phân biệt: Ví dụ 4: Tìm tập xác định của hàm số: Ví dụ 5: Chứng minh rằng phương trình sau vô nghiệm: Ví dụ 6: Tìm nghiệm nguyên của phương trình: V. So sánh một số với các nghiệm của tam thức bậc hai () Định lý: Áp dụng: Ví dụ 1: Cho phương trình: (1) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn Ví dụ 2: Xác định m để phương trình : có nghiệm Ví dụ 3 : Với giá trị nào của m thì Ví dụ 4 : Với giá trị nào của m thì BÀI TẬP RÈN LUYỆN: Bài 1: Cho phương trình: (1) Tìm m để phương trình (1) có 2 nghiệm phân biệt (m>1) Bài 2: Cho phương trình: (1) Tìm m để phương trình (1) có 2 nghiệm dương phân biệt () Bài 3: Cho phương trình: (1) Tìm m để phương trình (1) có hai nghiệm dương phân biệt () Bài 4: Cho phương trình: (1) Tìm m để phương trình (1) có 4 nghiệm phân biệt Bài 5: Cho phương trình: (1) Tìm m để phương trình (1) có 3 nghiệm phân biệt Bài 6: Cho phương trình: (1) Tìm k để phương trình (1) có 3 nghiệm phân biệt Bài 7: Cho phương trình : (1) Với giá trị nào của m thì pt (1) có hai nghiệm phân biệt x1, x2 thỏa Bài 8: Cho phương trình : (1) Với giá trị nào của m thì pt (1) có hai nghiệm phân biệt x1, x2 thỏa Bài 9: Cho phương trình: (1) Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn Bài 10: Cho phương trình: (1) Tìm m để pt (1) hai nghiệm phân biệt x1, x2 sao cho biểu thức đạt GTNN Bài 11: Cho phương trình: (1) Tìm m để phương trình (1) có hai nghiệm phân biệt nhỏ hơn -1 Bài 12: Cho phương trình: (1) Tìm m để phương trình (1) có ba nghiệmphân biệt x1, x2, x3 thỏa mãn --------------------Hết-------------------- Chuyên đề 2 : HỆ PHƯƠNG TRÌNH ĐẠI SỐ TÓM TẮT GIÁO KHOA I. Hệ phương trình bậc nhất nhiều ẩn 1. Hệ phương trình bậc nhất hai ẩn a. Dạng : (1) Cách giải đã biết: Phép thế, phép cộng ... b. Giải và biện luận phương trình : Quy trình giải và biện luận Bước 1: Tính các định thức : (gọi là định thức của hệ) (gọi là định thức của x) (gọi là định thức của y) Bước 2: Biện luận Nếu thì hệ có nghiệm duy nhất Nếu D = 0 và hoặc thì hệ vô nghiệm Nếu D = Dx = Dy = 0 thì hệ có vô số nghiệm hoặc vô nghiệm Ý nghĩa hình học: Giả sử (d1) là đường thẳng a1x + b1y = c1 (d2) là đường thẳng a2x + b2y = c2 Khi đó: 1. Hệ (I) có nghiệm duy nhất (d1) và (d2) cắt nhau 2. Hệ (I) vô nghiệm (d1) và (d2) song song với nhau 3. Hệ (I) có vô số nghiệm (d1) và (d2) trùng nhau Áp dụng: Ví dụ1: Giải hệ phương trình: Ví dụ 2: Giải và biện luận hệ phương trình : Ví dụ 3: Cho hệ phương trình : Xác định tất cả các giá trị của tham số m để hệ có nghiệm duy nhất (x;y) thỏa x >1 và y > 0 Ví dụ 4: Với giá trị nguyên nào của tham số m hệ phương trình có nghiệm duy nhất (x;y) với x, y là các số nguyên. () Ví dụ 5: Cho hệ phương trình : Xác định tất cả các giá trị của tham số m để hệ có nghiệm duy nhất (x;y) sao cho đạt giá trị lớn nhất. II. Hệ phương trình bậc hai hai ẩn: 1. Hệ gồm một phương trình bậc nhất và một phương trình bậc hai hai ẩn: Ví dụ : Giải các hệ: a) b) Cách giải: Giải bằng phép thế 2. Hệ phương trình đối xứng : 1. Hệ phương trình đối xứng loại I: a.Định nghĩa: Đó là hệ chứa hai ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau thì hệ phương trình không thay đổi. b.Cách giải: Bước 1: Đặt x+y=S và xy=P với ta đưa hệ về hệ mới chứa hai ẩn S,P. Bước 2: Giải hệ mới tìm S,P . Chọn S,P thoả mãn . Bước 3: Với S,P tìm được thì x,y là nghiệm của phương trình : ( định lý Viét đảo ). Chú ý: Do tính đối xứng, cho nên nếu (x0;y0) là nghiệm của hệ thì (y0;x0) cũng là nghiệm của hệ Áp dụng: Ví du 1ï: Giải các hệ phương trình sau : 1) 2) 3) 4) 5) 6) 7) 8) 1) (0;2); (2;0) 2) 3) 4) 5) 6) 7) (4;4) 8) Ví dụ2 : Với giá trị nào của m thì hệ phương trình sau có nghiệm: Ví dụ 3: Với giá trị nào của m thì hệ phương trình sau có nghiệm: 2. Hệ phương tr ... tuyến với (C) biết tiếp tuyến đi qua điểm A(0;-1) Ví dụ 2: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm A(-2;0). BÀI TẬP RÈN LUYỆN Bài 1: Viết phương trình tiếp tuyến của đồ thị (C) của hàm số tại điểm uốn và chứng minh rằng là tiếp tuyến của (C) có hệ số góc nhỏ nhất Bài 2: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến vuông góc với đường thẳng Bài 3: Cho hàm số (C) Tìm trên đồ thị (C) các điểm mà tiếp tuyến tại đó vuông góc với đường thẳng Bài 4: Cho đường cong (C): Tìm các điểm trên (C) mà tiếp tuyến với (C) tại đó vuông góc với tiệm cận xiên của (C). Bài 5: Cho hàm số (C) Tìm các điểm trên đồ thị (C) mà tiếp tuyến tại mỗi điểm ấy với đồ thị (C) vuông góc với đường thẳng đi qua hai điểm cực đại, cực tiểu của (C). Bài 6: Cho hàm số (Cm) Gọi M là điểm thuộc (Cm) có hoành độ bằng -1 . Tìm m để tiếp tuyến của (Cm) tại điểm M song song với đường thẳng 5x-y=0 Bài 7: Cho đường cong (C): Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm M(2;-7) 4.BÀI TOÁN 4: BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẰNG ĐỒ THỊ Cơ sở của phương pháp: Xét phương trình f(x) = g(x) (1) Nghiệm x0 của phương trình (1) chính là hoành độ giao điểm của (C1):y=f(x) và (C2):y=g(x) Dạng 1 : Bằng đồ thị hãy biện luận theo m số nghiệm của phương trình : f(x) = m (*) Phương pháp: Bước 1: Xem (*) là phương trình hoành độ giao điểm của hai đồ thị: Bước 2: Vẽ (C) và () lên cùng một hệ trục tọa độ Bước 3: Biện luận theo m số giao điểm của () và (C) Từ đó suy ra số nghiệm của phương trình (*) Minh họa: Dạng 2: Bằng đồ thị hãy biện luận theo m số nghiệm của phương trình : f(x) = g(m) (* *) Phương pháp: Đặt k=g(m) Bước 1: Xem (**) là phương trình hoành độ giao điểm của hai đồ thị: Bước 2: Vẽ (C) và () lên cùng một hệ trục tọa độ Bước 3: Biện luận theo k số giao điểm của () và (C) . Dự a vào hệ thức k=g(m) để suy ra m Từ đó kết luận về số nghiệm của phương trình (**). Minh họa: Áp dụng: Ví dụ: 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số 2) Biện luận theo m số nghiệm của phương trình: 3) Tìm m để phương trình sau có 6 nghiệm phân biệt: BÀI TẬP RÈN LUYỆN Bài 1: Biện luận theo m số nghiệm của các phương trình : a. b. Bài 2: Tìm k để phương trình sau có ba nghiệm phân biệt: Bài 3: Tìm m để phương trình sau có nghiệm duy nhất: Bài 4 :Tìm m để phương trình sau có hai nghiệm phân biệt: Bài 5: Tìm m để phương trình sau có 6 nghiệm phân biệt: Bài 6: Biện luận theo m số nghiệm của phương trình : Bài 7: Tìm a để phương trình sau có nghiệm: 5. BÀI TOÁN 5: HỌ ĐƯỜNG CONG BÀI TOÁN TỔNG QUÁT: Cho họ đường cong ( m là tham số ) Biện luận theo m số đường cong của họ đi qua điểm cho trước. PHƯƠNG PHÁP GIẢI: Ta có : Họ đường cong đi qua điểm (1) Xem (1) là phương trình theo ẩn m. Tùy theo số nghiệm của phương trình (1) ta suy ra số đường cong của họ (Cm) đi qua M0 Cụ thể: Nếu phương trình (1) có n nghiệm phân biệt thì có n đường cong của họ (Cm) đi qua M0 Nếu phương trình (1) vô nghiệm thì mọi đường cong của họ (Cm) đều không đi qua M0 Nếu phương trình (1) nghiệm đúng với mọi m thì mọi đường cong của họ (Cm) đều đi qua M0 Trong trường hợp này ta nói rằng M0 là điểm cố định của họ đường cong Áp dụng: Ví dụ: Gọi (Cm) là đồ thị hàm số . Tìm m để tiệm cận xiên của (Cm) đi qua điểm A(2;0) Ví dụ: Cho hàm số (1). Tìm m để điểm uốn của đồ thị hàm số (1) thuộc đường thẳng y=x+1 TÌM ĐIỂM CỐ ĐỊNH CỦA HỌ ĐƯỜNG CONG BÀI TOÁN TỔNG QUÁT: Cho họ đường cong ( m là tham số ) Tìm điểm cố định của họ đường cong (Cm) PHƯƠNG PHÁP GIẢI Bước 1: Gọi là điểm cố định (nếu có) mà họ (Cm) đi qua. Khi đó phương trình: nghiệm đúng m (1) Bước 2: Biến đổi phương trình (1) về một trong các dạng sau: Dạng 1: Dạng 2: Áp dụng định lý: (2) (3) Bước 3: Giải hệ (2) hoặc (3) ta sẽ tìm được 6. BÀI TOÁN 6: TÌM CÁC ĐIỂM ĐẶC BIỆT TRÊN ĐỒ THỊ CỦA HÀM SỐ Bài 1: Cho hàm số Tìm trên đồ thị hàm số tất cả những điểm có các toạ độ là nguyên . Bài 2: Cho hàm số Tìm điểm thuộc đồ thị hàm số sao cho khoảng cách từ đó đến trục hoành bằng hai lần khoảng cách từ đó đến trục tung . Bài 3: Cho hàm số Tìm trên đồ thị hàm số những điểm có tổng khoảng cách đến hai tiệm cận nhỏ nhất Bài 4: Cho hàm số Tìm điểm M trên đồ thị (C) sao cho khoảng cách từ M đến giao điểm của hai đường tiệm cận là nhỏ nhất Bài 5: Cho hàm số Tìm điểm thuộc đồ thị hàm số sao cho khoảng cách từ điểm đó đến đường thẳng y+3x+6=0 là nhỏ nhất. Bài 6: Cho hàm số Tìm trên đồ thị hàm số điểm M sao cho khoảng cách từ M đến đường thẳng (d):y=2x-1 là nhỏ nhất. Bài 7: Cho hàm số (C) Tìm hai điểm A,B trên hai nhánh khác nhau của (C) sao cho độ dài đoạn AB nhỏ nhất Bài 8: Cho hàm số Tìm trên đồ thị hàm số hai điểm đối xứng nhau qua điểm Bài 9: Cho hàm số Tìm trên đồ thị hàm số hai điểm đối xứng nhau qua đường thẳng y=x-1 7. BÀI TOÁN 7: CÁC BÀI TOÁN VỀ SỰ ĐỐI XỨNG Bài 1: Cho hàm số (C). Chứng minh rằng (C) nhận giao điểm hai tiệm cận đứng và xiên làm tâm đối xứng. Bài 2: Cho hàm số (Cm) Tìm tất cả các giá trị của tham số m để đồ thị (Cm) có hai điểm phân biệt đối xứng nhau qua gốc toạ độ Bài 3: Cho hàm số (Cm) Tìm tất cả các giá trị của tham số m để đồ thị (Cm) có hai điểm phân biệt đối xứng nhau qua gốc tọa độ Bài 4: Cho hàm số (Cm) Tìm tất cả các giá trị của tham số m để đồ thị (Cm) có hai điểm phân biệt đối xứng nhau qua gốc toạđộ ----------------------------------Hết----------------------------------- CÂU HỎI TRẮC NGHIỆM Chuyên đề 13: TÍCH PHÂN VÀ ỨNG DỤNG TÓM TẮT GIÁO KHOA I. Bảng tính nguyên hàm cơ bản: Bảng 1 Bảng 2 Hàm số f(x) Họ nguyên hàm F(x)+C Hàm số f(x) Họ nguyên hàm F(x)+C a ( hằng số) ax + C sinx -cosx + C sin(ax+b) cosx Sinx + C cos(ax+b) tgx + C -cotgx + C tgx cotgx Phương pháp 1: Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên hàm cơ bản Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức ... và biến đổi lượng giác bằng các công thức lượng giác cơ bản. Ví dụ : Tìm họ nguyên hàm của các hàm số sau: 1. 2. Phương pháp 2: Sử dụng cách viết vi phân hóa trong tích phân Ví dụ: Tính các tích phân: 1. 2. 3. I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG ĐN VÀ CÁC TÍNH CHẤT TÍCH PHÂN 1. Định nghĩa: Cho hàm số y=f(x) liên tục trên . Giả sử F(x) là một nguyên hàm của hàm số f(x) thì: ( Công thức NewTon - Leiptnitz) 2. Các tính chất của tích phân: Tính chất 1: Nếu hàm số y=f(x) xác định tại a thì : Tính chất 2: Tính chất 3: Nếu f(x) = c không đổi trên thì: Tính chất 4: Nếu f(x) liên tục trên và thì Tính chất 5: Nếu hai hàm số f(x) và g(x) liên tục trên và thì Tính chất 6: Nếu f(x) liên tục trên và thì Tính chất 7: Nếu hai hàm số f(x) và g(x) liên tục trên thì Tính chất 8: Nếu hàm số f(x) liên tục trên và k là một hằng số thì Tính chất 9: Nếu hàm số f(x) liên tục trên và c là một hằng số thì Tính chất 10: Tích phân của hàm số trên cho trước không phụ thuộc vào biến số , nghĩa là : Bài 1: Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12). 13) 14) 15) 16) 17) 18) Bài 2: 1) 2) 3) 4) 5) 6) 7) 8) Bài 3: 1) Tìm các hằng số A,B để hàm số thỏa mãn đồng thời các điều kiện và 2) Tìm các giá trị của hằng số a để có đẳng thức : II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ : 1) DẠNG 1:Tính I = bằng cách đặt t = u(x) Công thức đổi biến số dạng 1: Cách thực hiện: Bước 1: Đặt Bước 2: Đổi cận : Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được (tiếp tục tính tích phân mới) Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 2) DẠNG 2: Tính I = bằng cách đặt x = Công thức đổi biến số dạng 2: Cách thực hiện: Bước 1: Đặt Bước 2: Đổi cận : Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được (tiếp tục tính tích phân mới) Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP VI PHÂN: Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) III. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN: Công thức tích phân từng phần: Hay: Cách thực hiện: Bước 1: Đặt Bước 2: Thay vào công thức tích phân từng từng phần : Bước 3: Tính và Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) MỘT SỐ BÀI TOÁN TÍCH PHÂN QUAN TRỌNG VÀ ỨNG DỤNG Bài 1: 1) CMR nếu f(x) lẻ và liên tục trên [-a;a] (a>0) thì : 2) CMR nếu f(x) chẵn và liên tục trên [-a;a] (a>0) thì : Bài 2: 1) CMR nếu f(t) là một hàm số liên tục trên đọan [0,1] thì: a) b) ÁP DỤNG: Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) Bài 3:CMR nếu f(x) liên tục và chẵn trên R thì ; ÁP DỤNG : Tính các tích phân sau: 1) 2) 3) IV .ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG: Công thức: Tính diện tích của các hình phẳng sau: 1) (H1): 2) (H2) : 3) (H3): 4) (H4): 5) (H5): 6) (H6): 7) (H7): 8) (H8) : 9) (H9): 10) (H10): 11) 12) V. ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY. Công thức: Bài 1: Cho miền D giới hạn bởi hai đường : x2 + x - 5 = 0 ; x + y - 3 = 0 Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Bài 2: Cho miền D giới hạn bởi các đường : Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Oy Bài 3: Cho miền D giới hạn bởi hai đường : và y = 4 Tính thể tích khối tròn xoay được tạo nên do D quay quanh: a) Trục Ox b) Trục Oy Bài 4: Cho miền D giới hạn bởi hai đường : . Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Bài 5: Cho miền D giới hạn bởi các đường : Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox ------------------------------Hết-------------------------------
Tài liệu đính kèm: