Chuyên đề luyện thi Đại học: Ứng dụng đạo hàm, các bài toán liên quan

Chuyên đề luyện thi Đại học: Ứng dụng đạo hàm, các bài toán liên quan

Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH

Vấn đề 3: Cực trị của hàm số

pdf 2 trang Người đăng ngochoa2017 Lượt xem 1409Lượt tải 0 Download
Bạn đang xem tài liệu "Chuyên đề luyện thi Đại học: Ứng dụng đạo hàm, các bài toán liên quan", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH 
Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 3 
Vấn đề 3: Cực trị của hàm số 
Bài 1) Tìm m để hàm số mxxmxy +++= 53 23 đạt cực đại tại x = 2 
Bài 2) Tìm m để hàm số 
mx
mxxy
+
++
=
12
 đạt cực đại tại x = 2 
Bài 3) Cho hàm số ( ) mmxxxmy ++++= 23 32 . Tìm m để hàm số có cực đại và cực tiểu? 
Bài 4) Cho hàm số ( ) ( )
3
1231
3
1 23 +-+--= xmxmmxy . Tìm m để hàm số có cực đại, cực tiểu và xcđ<xct 
Bài 5) Xác định m sao cho hàm số 
( )
1
14422
-
-+-+
=
x
mxmmxy có hai cực trị trong miền x>0 
Bài 6) Xác định m để hàm số 24 2mxxy +-= có 3 cực trị 
Bài 7) Tìm tất cả các giá trị của m để hàm số 
( )
mx
mmxmxy
+
++++
=
432 22
 có hai cực trị và giá trị các 
điểm cực trị trái dấu nhau. 
Bài 8) Cho hàm số 
1
82
-
+-+
=
x
mmxxy . Xác định các giá trị của m để điểm cực đại và cực tiểu của đồ thị 
hàm số ở về hai phía đường thẳng 0179 =-- yx 
Bài 9) Cho hàm số ( ) ( ) 126132 23 --+-+= xmxmxy . Xác định m để hàm số có cực đại, cực tiểu và lập 
phương trình đường thẳng qua các điểm cực đại và cực tiểu của đồ thị hàm số. 
Bài 10) Cho hàm số 
mx
mmxxy
-
-+-
=
22
. Xác định m để hàm số có cực đại và cực tiểu. Khi đó hãy viết 
phương trình đường thẳng đi qua điểm cực đại và cực tiểu của hàm số. 
Bài 11) Cho hàm số: mxmxxy ++-= 223 3 . Tìm tất cả các giá trị của m để hàm số có cực đại, cực tiểu 
và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng 
2
5
2
1
-= xy 
Bài 12) Cho hàm số 
mx
mmxxy
+
+-
=
22
. Xác định m để đường thẳng đi qua các điểm cực đại và cực tiểu 
của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 1. 
Bài 13) Cho hàm số 
1
222
+
++
=
x
mxxy . Tìm các giá trị của m để đồ thị hàm số có điểm cực đại, điểm cực 
tiểu cách đều đường thẳng 02 =++ yx 
Bài 14) Cho hàm số 
x
mxy 1+= . Tìm m để hàm số có cực trị và khoảng cách từ điểm cực tiểu đến tiệm cận 
xiên của đồ thị hàm số bằng 
2
1
. 
Bài 15) Cho hàm số 
( )
1
112
+
++++
=
x
mxmxy . Chứng minh rằng với m bất kỳ, đồ thị của hàm số luôn luôn 
có điểm cực đại, điểm cực tiểu và khoảng cách giữa hai điểm đó bằng 20 . 
Chuyên đề LTĐH Ứng dụng đạo hàm, các bài toán liên quan GIẢI TÍCH 
Gv: Nguyễn Lương Thành – (Năm học 2007 – 2008) Trang 4 
Bài 16) Cho hàm số 
x
mxxy
-
+
=
1
2
. Tìm m để hàm số có cực đại và cực tiểu. Với giá trị nào của m thì 
khoảng cách giữa hai điểm cực trị của đồ thị hàm số bằng 10? 
Bài 17) Cho hàm số ( )( )mx
mmxmxy
+
+++++
=
2
412 22
. Tìm m để hàm số có cực trị và tính khoảng cách 
giữa hai điểm cực trị của đồ thị hàm số đã cho. 
Bài 18) Cho hàm số 12 224 +-= xmxy . Tìm m để đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam 
giác vuông cân. 
Bài 19) Cho hàm số 22 223 -+-= xmmxxy . Tìm m để hàm số đạt cực tiểu tại x = 1. 
Bài 20) Cho hàm số 
mx
mmxxy
-
-++
=
22 312
. Tìm m để hàm số có hai điểm cực trị nằm về hai phía trục 
tung. 
Bài 21) Cho hàm số 
( )
1
4232
-
+++-
=
x
mxmxy . Tìm m để hàm số có CĐ và CT và khoảng cách giữa hai 
điểm CĐ, CT của đồ thị nhỏ hơn 3. 
Bài 22) Cho hàm số 
( )
1
1332
-
+++-
=
x
mxmxy . Tìm m để hàm số có CĐ và CT và các giá trị CĐ, CT của 
hàm số cùng âm. 
Bài 23) Cho hàm số ( )( )122 ----= mxxmxy . Tìm m để hàm số có cực đại, cực tiểu và hoành độ điểm 
cực đại xcđ, hoành độ điểm cực tiểu xct thỏa: | xcđ . xct| = 1 
Bài 24) Cho hàm số 
( )
1
3522
+
+++-
=
x
mxmxy . Tìm m để hàm số có cực trị tại điểm x>1. Hãy xác định 
đó là điểm cực đại hay cực tiểu của đồ thị. 
Bài 25) Cho hàm số 12 24 -+-= mmxxy . Tìm m để đồ thị hàm số có ba điểm cực trị tạo thành ba đỉnh 
của một tam giác đều. 
Bài 26) Cho hàm số 
( )
2
412 22
+
++++
=
x
mmxmxy . Tìm m để hàm số có cực đại và cực tiểu, đồng thời các 
điểm cực trị của đồ thị cùng với gốc tọa độ O tạo thành một tam giác vuông tại O. 
Bài 27) Cho hàm số ( ) 13133 2223 ---++-= mxmxxy . Tìm m để hàm số có cực đại, cực tiểu và các 
điểm cực trị của đồ thị hàm số cách đều gốc tọa độ O. 
Bài 28) Cho hàm số 
( )
1
2122
-
-+-+
=
x
mxmxy . Tìm m để hàm số có cực đại, cực tiểu và các giá trị cực 
đại, cực tiểu cùng dấu. 
Bài 29) Cho hàm số 
1
122
-
-+-
=
mx
mmxxy . Tìm m để tiệm cận xiên của đồ thị hàm số đi qua gốc tọa độ và 
hàm số có cực trị. 
Bài 30) Cho hàm số 
x
mmxmxy 352
222 +-++
= (m>0). Tìm m để hàm số có điểm cực tiểu thuộc 
khoảng (0; 2m). 

Tài liệu đính kèm:

  • pdfChuyen de giai thich 12 phan 3.pdf