Chuyên đề Giải pháp nâng cao chất lượng môn toán vấn đề phương pháp tọa độ trong không gian dành cho học sinh trung bình yếu

Chuyên đề Giải pháp nâng cao chất lượng môn toán vấn đề phương pháp tọa độ trong không gian dành cho học sinh trung bình yếu

 - Đối với Giáo viên: Dạy học còn chủ quan, chưa thống nhất nội dung giảng dạy, chưa có điều kiện học hỏi trao đổi chuyên môn, còn lúng túng trong đổi mới phương pháp dạy học, .

 - Đối với học sinh: Đa số mất căn bản, khó lấy lại căn bản hơn bộ môn khác, không biết phương pháp học, ham chơi, chưa xác định được động cơ học tập.

 - Đối với gia đình học sinh: ít quan tâm việc học của con em mình lo làm kinh tế, thường giao phó việc học tập của con em cho nhà trường.

- Chương trình sách giáo khoa: Còn nặng về lý thuyết mang tính hàn lâm. chưa có sự thống nhất hài hòa giữa 2 bộ sách cũng như quan điểm trình bày.

 

doc 19 trang Người đăng haha99 Lượt xem 1049Lượt tải 0 Download
Bạn đang xem tài liệu "Chuyên đề Giải pháp nâng cao chất lượng môn toán vấn đề phương pháp tọa độ trong không gian dành cho học sinh trung bình yếu", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
GIẢI PHÁP NÂNG CAO CHẤT LƯỢNG MÔN TOÁN
Vấn đề phương pháp tọa độ trong không gian dành cho học sinh trung bình yếu
I) THỰC TRẠNG DẠY VÀ HỌC HHGT TRONG KHÔNG GIAN:
	- Đối với Giáo viên: Dạy học còn chủ quan, chưa thống nhất nội dung giảng dạy, chưa có điều kiện học hỏi trao đổi chuyên môn, còn lúng túng trong đổi mới phương pháp dạy học, ...
	- Đối với học sinh: Đa số mất căn bản, khó lấy lại căn bản hơn bộ môn khác, không biết phương pháp học, ham chơi, chưa xác định được động cơ học tập....
	- Đối với gia đình học sinh: ít quan tâm việc học của con em mình lo làm kinh tế, thường giao phó việc học tập của con em cho nhà trường...
- Chương trình sách giáo khoa: Còn nặng về lý thuyết mang tính hàn lâm. chưa có sự thống nhất hài hòa giữa 2 bộ sách cũng như quan điểm trình bày...
- Cơ sở vật chất chưa đáp ứng trong việc đổi mới phương pháp dạy học, như chưa có phòng học bộ môn, việc sử dụng công nghệ thông tin vào dạy học còn hạn chế... 
II) MỘT SỐ GIẢI PHÁP: 
Giáo viên cần chuẩn bị tốt yêu cầu sau:
- Thường xuyên tự học hỏi trao đổi chuyên môn.
- Nghiên cứu thật kỹ chuẩn kiến thức để dạy kiến thức chuẩn cho học sinh. 	
- Cần nghiên cứu các đề thi Tốt nghiệp THPT những năm gần đây, trong đó hình học giải tích trong không gian chiếm 1/5 số điểm (2 điểm). Câu hỏi trong đề thi cho theo chuẩn kiến thức (kiến thức cơ bản)
- Nội dung. Chú ý có 3 phần chính:
 - Giáo viên lớp 12 dạy thật kỹ phần này, sao cho mỗi học sinh đều làm được, nhắc lại nhiều lần và cho bài tập tương tự củng cố sau từng nội dung dạy.
+ Cụ thể: phải đảm bảo các kiến thức chuẩn trọng tâm và rèn luyện kỹ năng giải được các các dạng toán sau:
Hệ trục tọa độ trong không gian 
- Tính dược tọa độ các phép toán của 2 vectơ: tổng, hiệu, tính 1 số với 1 véctơ, tính vô hướng 2 vec tơ
- Khoảng cách 2 điểm 
- Xác định tâm, bán kính mặt cầu cho trước
- viết được phương trình mặt cầu
2) Phương trình mắt phẳng
 	 - Xác định vectơ pháp tuyến của mặt phẳng. (Tính có hướng 2 vectơ)
 	 - Biết cách viết phương trình mặt phẳng. (xác định 2 yếu tố)
 	 - Tính khoảng cách từ một điểm đến mặt phẳng
 3) Phương trình đường thẳng
 	 - Biết cách viết phương trình tham số của đường thẳng
 	 - Từ các phương trình của 2 đường thẳng, biết cách xác định vị trí tương đối của 2 đường thẳng đó
* Để ý:
- Đây là bài tập cơ bản giáo viên dạy thật kỹ, mỗi phần phải làm ví dụ mẫu và cho ví dụ tương tự, học sinh giải bài tập tại lớp về nhà làm lại.
- Hướng dẫn học sinh biết tóm tắt trọng tâm bài. yêu cầu cần đạt
- Soạn tiết dạy có bài tập cùng loại (tương tự) về nhà làm lại (giáo viên kiểm tra bái làm tiết dạy sau)
- Sau khi giải xong một dạng toán giáo viên cho bài tập tự luyện có hướng dẫn giúp học sinh hiểu và vận dụng làm được bài tập ở nhà
- Trong khi giải bài tập giáo viên khuyến khích cho học sinh giải nhanh cho điểm khuyến khích, kích thích sự học tập của học sinh qua dạy các bài tập toán tương tự.
- Động viên, khuyến khích học sinh lên bảng, xung phong giải bài tập, khen học sinh có tiến bộ, có cố gắng, .... Tuyệt đối không dùng từ ngữ chê bai các em, mà bình tĩnh, kiên nhẫn động viên học sinh yếu.. 
- Sau mổi bài, hết phần (Chương) có tóm tắt trọng tâm phương pháp giải và có hệ thống bài tập tự rèn luyện (tham khảo SGK và SBT).
III/ CÁC VẤN ĐỀ CỤ THỂ ĐỀ XUẤT DÀNH CHO HỌC SINH CHUẨN: 
§ 1. TỌA ĐỘ TRONG KHÔNG GIAN
CÁC KIẾN THỨC CƠ BẢN
Tọa độ điểm và véc tơ:
Trong không gian với hệ tọa độ Oxyz:
	1. 
 2. Û 
Biểu thức tọa độ các phép toán véc tơ 
Trong không gian Oxyz Cho và ta có
 và cùng phương
Cho A(xA;yA;zA), B(xB;yB;zB) thì 	
 là trung điểm AB thì M
Tích vô hướng và ứng dụng 
Trong không gian Oxyz, tích vô hướng của và là:
 (với )
 và vuông góc 
Phương trình mặt cầu
Mặt cầu (S) tâm I(a;b;c) bán kính r có phưong trình (x-a)2 + (y-b)2 + (z-c)2 = r2 
Phương trình : x2 + y2  + z2 + 2Ax + 2By + 2Cz + D = 0 với A2+B2+C2-D > 0 
 là phương trình mặt cầu tâm I(-A;-B;-C) , bán kính .
BÀI TẬP:
Bài 1. 
Viết tọa độ của các vectơ say đây: +; ; 	;	
Bài 2. 
Cho ba vectơ = ( 2; -1 ; 0 ),= ( -1; -2; 2) , = (-2 ; 1; 0 ).
Tìm tọa độ của vectơ : = -2+ 3- 5 và = 3- 2
Chứng tỏ và 
Bài 3. Cho 2 vectơ = (1; 2; 3) Tìm tọa độ của vectơ , biết rằng: 
 a) 	b) 
Bài 4.
 Cho ba điểm không thẳng hàng: 
Tìm tọa độ trọng tâm G của tam giác ABC.
Tính chu vi tam giác ABC
Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.
Tìm tọa độ diểm M sao cho 
Bài 5. 
Cho hình hộp ABCD.A'B'C'D', A(1; 0; 1), B(2; 1; 2), D(1; -1; 1), C'(4; 5; -5). 
Tìm tọa độ các đỉnh còn lại.
Tìm tọa độ trọng tâm G, G’ lần lượt của tứ diện A.A’BD và C’.CB’D’
Chứng tỏ rằng: 3GG’ = AC’
Bài 6: 
Xác định tọa độ của tâm và bán kính của các mặt cầu có phương trình sau đây:
Bài 7.
Viết phương trình mặt cầu:
Tâm I(2;1;-1), bán kính R = 4.	
Đi qua điểm A(2;1;-3) và tâm I(3;-2;-1).
Hai đầu đường kính là A(-1;2;3), B(3;2;-7)
Đi qua bốn điểm (0; 0; 0), A(2; 2; 3), B(1; 2; -4), C(1; -3; -1)
Đi qua điểm A(1;3;0) ,B(1;1;0) và tâm I thuộc 0x.
§ 2. PHƯƠNG TRÌNH MẶT PHẲNG
 CÁC KIẾN THỨC CƠ BẢN
Véc tơ pháp tuyến của mặt phẳng: 
 ≠ là véctơ pháp tuyến của mặt phẳng (a) ^ (a)
2. Phương trình tổng quát của mặt phẳng
* Định nghĩa: 
Trong không gian Oxyz phương trình dạng Ax + By + Cz + D = 0 
 với A2+B2+C2 ≠ 0 được gọi là phương trình tổng quát của mặt phẳng 
Mặt phẳng (P) : Ax + By + Cz + D = 0 có véctơ pháp tuyến là 
 Mặt phẳng (P) đi qua điểm M0(x0;y0;z0) và nhận làm vectơ pháp tuyến có phương trình dạng: A(x-x0) + B(y-y0) + C(z-z0) = 0.
Nếu (P) có cặp vectơ không cùng phương và có giá song song hoặc nằm trên (P) thì vectơ pháp tuyến của (P) được xác định 
 = 
* Các trường hợp riêng của phương trình măt phẳng
Trong không gian Oxyz cho mp(: Ax + By + Cz + D = 0. Khi đó:
D = 0 khi và chỉ khi (đi qua gốc tọa độ.
A=0 ,B ,C , D khi và chỉ khi song song với trục Ox
A=0 ,B = 0 ,C, D khi và chỉ khi song song mp (Oxy )
A,B,C,D . Đặt Khi đó 
(Các trường hợp còn lại xét tương tự)
3. Vị trí tương đối của hai mặt phẳng
Trong không gian Oxyz cho (): Ax+By+Cz+D = 0, (’):A’x+B’y+C’z+D’= 0 
()cắt (’) Û A : B : C ≠ A’: B’: C’
() // (’) Û A : A’ = B : B’ = C : C’ ≠ D : D’
() ≡ (’) Û A : B : C : D = A’: B’: C’: D’
Đặc biệt
() (’) 
4. Khoảng cách từ một điểm đến một mặt phẳng
Khoảng cách từ M0(x0;y0;z0) đến mp(α): Ax + By + Cz + D = 0 cho bởi công thức :
BÀI TẬP
Bài 1. 
Lập phương trình mặt phẳng (P) đi qua điểm M và có vtpt biết
a. Điểm	b. 	
c, 	d, 
Bài 2: 
Trong không gian Oxyz, cho bốn điểm A( 3;-2;-2), B(3;2;0), C(0;2;1), D(-1;1;2)
Viết phương trình mặt phẳng (ABC).
Viết phương trình mặt phẳng trung trực của đoạn AC.
Viết phương trình mặt phẳng (P) chứa AB và song song với CD.
Viết phương trình mặt phẳng (Q) chứa CD và vuông góc với mp(ABC)
Bài 3.
	Lập phương trình mp đi qua điểm M và song song với mp biết:
a. 	b. 
c. 	d. 
Bài 4: 
Lập phương trình của mặt phẳng (P) đi qua M(1;1;1) và 
a. Song song với các trục 0x và 0y.	
b. Song song với các trục 0x,0z.
c. Song song với các trục 0y, 0z.
Bài 6: 
Lập phương trình của mặt phẳng đi qua 2 điểm M(1;-1;1) và B(2;1;1) và :
	 a. Cùng phương với trục 0x.
	 b. Cùng phương với trục 0y.
 c. Cùng phương với trục 0z.
Bài 7:
	Lập phương trình tổng quát của mặt phẳng (P) biết :
 a. (P) đi qua điểm A(-1;3;-2) và nhận làm VTPT.
 b. (P) đi qua điểm M(-1;3;-2) và song song với (Q): x+2y+z+4=0.
 c. (P) đi qua I(2;6;-3) và song song với các mặt phẳng toạ độ
Bài 8: 
Trong không gian Oxyz, cho mặt phẳng (P): 2x + y - z - 6 = 0
Viết phương trình mp (Q) đi qua gốc tọa độ O và song song với mp (P).
Tính khoảng cách từ gốc tọa độ đến mặt phẳng (P). ( TNPT năm 1993)
Bài 9*: 
Trong không gian Oxyz, cho hai mặt phẳng (P): x + y – z +5 = 0 và (Q): 2x – z = 0 
Chứng tỏ hai mặt phẳng đó cắt nhau
Lập phương trình mặt phẳng (α) qua giao tuyến của hai mặt phẳng (P) và (Q) và đi qua A(-1;2;3).
Lập phương trình mặt phẳng (b) qua giao tuyến của hai mặt phẳng (P) và (Q) và song song với Oz.
Lập phương trình mặt phẳng () đi qua gốc tọa độ O và vuông góc với hai mặt phẳng (P) và (Q).
Bài 10: 
Lập phương trình tổng quát của mặt phẳng (P) trong các trường hợp sau:
a. Đi qua hai điểm A(0;-1;4) và có cặp VTCP là và 
b. Đi qua hai điểm B(4;-1;1) và C(3;1;-1) và cùng phương với trục 0x.
Bài 11: 
Cho tứ diện ABCD có A(5;1;3) B(1;6;2) C(5;0;4) D(4;0;6) .
a. Viết phương trình tổng quát các mặt phẳng (ABC) (ACD) (ABD) (BCD).
b. Viết phương trình tổng quát của mặt phẳng (P) đi qua cạnh AB và song song vói CD. 
Bài 12:
Viết phương trình tổng quát của (P) 
a. Đi qua ba điểm A(1;0;0), B(0;2;0) , C(0;0;3) .
b. Đi qua A(1;2;3) ,B(2;2;3) và vuông góc với mặt phẳng (Q) : x+2y+3z+4=0
c. Chứa 0x và đi qua A(4;-1;2) ,
d. Chứa 0y và đi qua B(1;4;-3)
Bài 15: 
Cho hai điểm A(3;2;3) B(3;4;1) trong không gian 0xyz 
a. Viết phương trình mặt phẳng (P) là trung trực của AB.
b. Viết phương trình mp(Q) qua A vuông góc (P) và vuông góc với (y0z) 
 c. Viết phương trình mặt phẳng (R) qua A và song song với mp(P).
Bài 16: 
Trong không gian Oxyz, cho hai mặt phẳng (P): 2x + ky + 3z – 5 = 0 và 
 (Q): mx - 6y - 6z + 2 = 0
Xác định giá trị k và m để hai mặt phẳng (P) và (Q) song song nhau, lúc đó hãy tính khoảng cách giữa hai mặt phẳng.
Trong trường hợp k = m = 0 gọi (d) là giao tuyến của (P) và (Q)
Bài 17: 
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 1. 
Chứng minh rằng mp(AB’D’) song song mp(BC’D)
Tính khoảng cách giửa hai mặt phẳng trên.
Chứng minh rằng A’C vuông góc (BB’D’D)
§ 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN
CÁC KIẾN THỨC CƠ BẢN
Phương trình tham số của đường thẳng:
* Phương trình tham số của đường thẳng đi qua điểm M0(x0;y0;z0) và có vec tơ chỉ phương :
 * Nếu a1, a2 , a3 đều khác không. Phương trình đường thẳng viết dưới dạng chính tắc như sau:
Vị trí tương đối của các đường thẳng và các mặt phẳng
1. Vị trí tương đối của hai đường thẳng
Trong Kg Oxyz cho hai đường thẳng 
d có vtcp đi qua M(xo;yozo); 
d’có vtcp đi qua M’(xo;yozo);
, cùng phương 
d // d’Û 
d ≡ d’ Û 
, không cùng phương 
 (I)
d cắt d’ Û Hệ Phương trình (I) có một nghiệm
d chéo d’Û Hệ Phương trình (I) vô nghiệm
2. Vị trí tương đối của đường thẳng và mặt phẳng 
Trong Kg Oxyz cho (α): Ax+By+Cz+D = 0 và 
pt: A(xo+a1t) + B(yo+a2t) + C(z0+a3t) + D = 0 (1)
Phương trình (1) vô nghiệm thì d // (α)
Phương trình (1) có một nghiệm thì d cắt (α)
Phương trình (1) có vô số nghiệm thì d(α)
Đặc biệt :
 () () cùng phương
E. BÀI TẬP
Bài 1 
Lập phương trình tham số và chính của đường thẳng (d) trong các trường hợp sau :
a. (d) đi qua điểm M(1;0;1) và nhận làm VTCP
b. (d) đi qua 2 điểm A(1;0;-1) và B(2;-1;3)
c. (d) đi qua A(2; -1; 3) và vuông góc mặt phẳng (P): 3x + 2y – z + 1 = 0
Bài 2 
Viết phương trình của đường thẳng đi qua điểm M(2;3;-5) và song song với đường thẳng (d) có phương trình: 
Bài 3 
Viết phương trình tham số, chính tắc của đường thẳng (d) trong trường hợp sau:
Đi qua hai điểm A(1;3;1) và B(4;1;2).
Đi qua M(2;-1;1) vuông góc với mặt phẳng (P) : 2x – z + 1= 0. Tìm tọa độ giao điểm của (d) và (P).
(d) là giao tuyến của hai mặt phẳng 
Bài 4
Xét vị trí tương đối của các cặp đường thẳng sau:
 d: và d’ : 
 d: và d’: 
Bài 5
Cho hai đường thẳng (d1),(d2) có phương trình cho bởi : 
a) CMR hai đường thẳng đó cắt nhau. Xác định toạ độ giao điểm của nó.
b) Viết phương trình tổng quát của mặt phẳng (P) chứa (d1),(d2).
Bài 6 
Xét vị trí tương đối của đường thẳng (d) và mặt phẳng (P), tìm giao điểm nếu có.
a) (P): x-y+z+3=0	
b) (P): y+4z+17=0
Bài 7
Cho điểm A(1; 0; 0) và đường thẳng d: 
Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d
Tìm tọa độ điể A’ đối xứng với A qua đường thẳng d.
Bài 8 
Cho điểm M(1; 4; 2) và mặt phẳng 
Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên 
Tìm tọa độ điểm M’ đối xứng với M qua mặt phẳng 
Tính khoảng cách từ điểm M đến mặt phẳng 
Bài 9 	
Trong không gian Oxyz cho A(3;-1;0) , B(0;-7;3) , C(-2;1;-1) , D(3;2;6).
Viết phương trình mặt phẳng (ABC).
Viết phương trình đường thẳng (d) qua D vuông góc với mặt phẳng (ABC).
Tìm tọa độ điểm D’ đối xứng D qua mặt phẳng (ABC).
Tìm tọa độ điểm C’ đối xứng C qua đường thẳng AB
Bài 10 
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 1. 
Tính khoảng cách từ đỉnh A đến các mặt phẳng (A’BD) và (B’D’C).
Chứng tỏ rằng AC’ vuông góc mặt phẳng (A’BD) và (B’D’C).
MỘT SỐ BÀI TẬP ÔN TỔNG HỢP
Bài 1: 
Trong không gian tọa độ Oxyz cho 3 điểm A(-1; 1; 2), B(0; 1; 1), C(1; 0; 4).
Chứng minh tam giác ABC vuông. Viết phương trình tham số của đương thẳng AB.
Gọi M là điểm sao cho . Viết phương trình mặt phẳng đi qua M và vuông góc với đường thẳng BC. (Đề thi tốt nghiệp 2006)
Bài 2: 
Trong không gian tọa độ Oxyz, cho điểm E(1; 2; 3) và mặt phẳng có phương trình x + 2y – 2z + 6 = 0.
Viết phương trình mặt cầu (S) có tâm là góc tọa độ O và tiếp xúc mặt phẳng .
Viết phương trình tham số của đường thẳng () đi qua điểm E và vuông góc mặt phẳng . (Đề thi tốt nghiệp 2007 Lần 1)
Bài 3: 
Trong không gian tọa độ Oxyz, cho hai điểm M(1; 0; 2), N(3; 1; 5) và đường thẳng (d) có phương trình 	
Viết phương trình mặt phẳng (P) đi qua điểm M và vuông góc với đường thẳng (d).
Viết phương trình tham số của đương thẳng đi qua hai điểm M và N.
(Đề thi tốt nghiệp 2007 Lần 2)
Bài 4: 
Trong không gian tọa độ Oxyz, cho tam giác ABC với A(1; 4; -1), B(2; 4; 3) và C(2; 2; -1)
Viết phương trình mặt phẳng đi qua A và vuông góc với đường thẳng BC.
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
(Đề thi tốt nghiệp 2008)
Bài 5: 
Trong không gian tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình: (S): và (P): x + 2y + 2z +18 = 0.
Xác định tọa độ tâm T và bán kính mặt cầu (S). Tính khoảng cách từ T đến mặt phẳng (P).
Viết phương trình tham số của đương thẳng d đi qua T và vuông góc với (P). Tìm tọa độ giao điểm của d và (P).
(Đề thi tốt nghiệp 2009)
Bài 6:
Trong không gian với hệ tọa độ Oxyz cho M(2,-2,0) , N(-4;4;2) và mặt phẳng (P) có phương trình 6y+8z+1=0
1.Viết phương trình tham số của đường thằng d đi qua hai điềm M và N.
2.Lập phương trình mặt cầu (S) tâm M nhận mặt phẳng (P) là mặt phẳng tiếp diện.
Bài 7: 
Trong không gian với hệ trục Oxyz, cho A(1;1;2), B(0;-1;3), C(3;1;4)
1. Viết phương trình mặt phẳng () đi qua ba điểm A,B,C
 2.. Viết phương trình mặt cầu (S) tâm A và có đường kính bằng 4
Bài 8: 
Trong không gian Oxyz, cho điểm và đường thẳng d:
Viết phương trình mặt phẳng đi qua A và vuông góc với d.
Tìm tọa độ điểm A’ đối xứng với điểm A qua đường thẳng d.
Bài 9: 
Trong KgOxyz cho điểm A(2;0;1), đường thẳng (d): và mặt phẳng (P): .
Lập phương trình mặt cầu tâm A tiếp xúc với mặt phẳng (P).
Viết phương trình đường thẳng qua điểm A, vuông góc và cắt đường thẳng (d).
Bài 10: 
Trong không gian Oxyz cho ba điểm A( 2 ; -1 ; 1), B( 0;2 ;- 3) C( -1 ; 2 ;0).
Chứng minh A,B,C không thẳng hàng .Viết phương trình mp(ABC).
Viết phương trình tham số của đường thẳng BC.
Bài 11: 
Trong không gian Oxyz cho các điểm A( 1 ; -3 ; -1), B( -2; 1 ; 3)
 1/ Viết phương trình đường thẳng AB
 2/Viết phương trình mặt phẳng qua gốc toạ độ và vuông góc AB
Bài 12: 
Trong không gian với hệ trục Oxyz, cho A(1;2;3) và đường thẳng d có phương trình .
Viết phương trình mặt phẳng qua A và vuông góc d.
Tìm tọa độ giao điểm của d và mặt phẳng .
Bài 13: 
Trong không gian Oxyz , cho A(2 ;-3;1) và mp (Q) : x + 3y - z + 2 = 0 .
1. Viết phương trình tham số của đường thẳng (d) qua A và vuông góc với (Q).
2. Tìm tọa độ H hình chiếu của A trên (Q).Suy ra tọa độ A' đối xứng của A qua (Q).
Bài 14: 
Trong không gian , cho 4 điểm .
1. Viết phương trình mặt phẳng . Suy ra là một tứ diện.
2. Viết phương trình mặt cầu tâm và tiếp xúc mặt phẳng . 
Bài 15: 
Trong khoâng gian Oxyz, cho ñieåm M(1;2;3)
1. Vieát phöông trình maët phaúng () ñi qua M vaø song song vôùi maët phaúng .
2. Vieát phöông trình maët caàu (S) coù taâm I(1;1;1) vaø tieáp xuùc vôùi maët phaúng ().
Bài 16: Trong không gian Oxyz, cho điểm và đường thẳng d:
Viết phương trình mặt phẳng đi qua A và vuông góc với d.
Tìm tọa độ điểm A’ đối xứng với điểm A qua đường thẳng d
Bài 17:
Trong không gian Oxyz cho đường thẳng và điểm A(3;2;0)
Tìm tọa độ hình chiếu vuông góc H của A lên d
Tìm tọa độ điểm B đối xứng với A qua đường thẳng d.
Bài 18:
Trong không gian với hệ trục toạ độ Oxyz cho các điểm A(1,0,0); B(0,2,0); C(0,0,3) 
Viết phương trình tổng quát của mặt phẳng qua ba điểm:A, B, C
Gọi (d) là đường thẳng qua C và vuông góc mặt phẳng (ABC). Tìm tọa độ giao điểm của đường thẳng (d) và mặt phẳng (Oxy).
Bài 19: 
Trong không gian Oxyz cho mặt phẳng (a) : 2x + y + z – 9 = 0 và đường thẳng 
D :( t là tham số)
1. Tìm giao điểm I của D và (a).
2. Viết phương trình đường thẳng d qua I và vuông góc với (a).
Bài 20:
Trong không gian với hệ toạ độ Oxyz, cho hai điểm M(1;0;2), N(3;1;5) và đường thẳng (d) có phương trình 
1. Viết phương trình mp(P) đi qua điểm M và vuông góc với đường thẳng (d). 
2. Viết phương trình tham số của đường thẳng đi qua điểm hai điểm M và N.

Tài liệu đính kèm:

  • docCHUYENDE_HHGT_NAM.doc