Chuyên đề: Giải bài toán bằng cách lập phương trình

Chuyên đề: Giải bài toán bằng cách lập phương trình

CHUYÊN ĐỀ: GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH.

Dạng 1: Toán về quan hệ các số.

Ví dụ 1: Mộu số của một phân số lớn hơn tử số của nó là 3 đơn vị. Nếu tăng cả tử và mẫu của nó thêm 1 đơn vị thì được một phân số mới bằng 1/2 phân số đã cho. Tìm phân số đó?

Ví dụ 2: Tổng các chữ số của 1 số có hai chữ số là 9. Nếu thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại. Hãy tìm số đó?

Ví dụ 3: Tìm hai số tự nhiên liên tiếp có tổng các bình phương của nó là 85.

Bài 1: Đem một số nhân với 3 rồi trừ đi 7 thì được 50. Hỏi số đó là bao nhiêu?

 

doc 2 trang Người đăng ngochoa2017 Lượt xem 1917Lượt tải 0 Download
Bạn đang xem tài liệu "Chuyên đề: Giải bài toán bằng cách lập phương trình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề: Giải bài toán bằng cách lập phương trình.
Dạng 1: Toán về quan hệ các số.
Ví dụ 1: Mộu số của một phân số lớn hơn tử số của nó là 3 đơn vị. Nếu tăng cả tử và mẫu của nó thêm 1 đơn vị thì được một phân số mới bằng phân số đã cho. Tìm phân số đó?
Ví dụ 2: Tổng các chữ số của 1 số có hai chữ số là 9. Nếu thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại. Hãy tìm số đó?
Ví dụ 3: Tìm hai số tự nhiên liên tiếp có tổng các bình phương của nó là 85.
Bài 1: Đem một số nhân với 3 rồi trừ đi 7 thì được 50. Hỏi số đó là bao nhiêu?
Bài 2: Tổng hai số bằng 51. Tìm hai số đó biết rằng số thứ nhất thì bằng số thứ hai.
Bài 3: Tìm một số tự nhiên có hai chữ số, biết tổng các chữ số của nó là 7. Nếu đổi chỗ hai chữ số hàng đơn vị và hàng chụccho nhau thì số đó giảm đi 45 đơn vị.
Bài 4: Tìm hai số hơn kém nhau 5 đơn vị và tích của chúng bằng 150.
Bài 5: Tìm số tự nhiên có 2 chữ số, biết rằng số đó bằng lập phương của số tạo bởi chữ số hàng vạn và chữ số hàng nghìn của số đã cho theo thứ tự đó.
Dạng 2: Toán chuyển động
Ví dụ1: Xe máy thứ nhất đi trên quảng đường từ Hà Nội về Thái Bình hết 3 giờ 20 phút. Xe máy thứ hai đi hết 3 giờ 40 phút. Mỗi giờ xe máy thứ nhất đi nhanh hơn xe máy thứ hai 3 km.
Tính vận tốc của mỗi xe máy và quảng đường từ Hà Nội đến Thái Bình?
Ví dụ 2: Đoạn đường AB dài 180 km . Cùng một lúc xe máy đi từ A và ô tô đi từ B xe máy gặp ô tô tại C cách A 80 km. Nếu xe máy khởi hành sau 54 phút thì chúng gặp nhau tại D cách A là 60 km. Tính vận tốc của ô tô và xe máy ?
Ví dụ 3: Một ô tô đi trên quảng đường dai 520 km. Khi đi được 240 km thì ô tô tăng vận tốc thêm 10 km/h nữa và đi hết quảng đường còn lại. T ính vận tốc ban đầu của ô tô biết thời gian đi hết quảng đường là 8 giờ.
1. Một ô tô khởi hành từ A với vận tốc 50 km/h. Qua 1 giờ 15 phút ô tô thứ hai cũng khởi hành từ A đi cùng hướng với ô tô thứ nhất với vận tốc 40 km/h. Hỏi sau mấy giờ thì ô tô gặp nhau, điểm gặp nhau cách A bao nhiêu km?
2. Một ca nô xuôi dòng 50 km rồi ngược dòng 30 km. Biết thời gian đi xuôi dòng lâu hơn thời gian ngược dòng là 30 phút và vận tốc đi xuôi dòng lớn hơn vận tốc đi ngược dòng là 5 km/h.
Tính vận tốc lúc đi xuôi dòng?
	3. Hai ô tô cùng khởi hành cùng một lúc từ A đến B cách nhau 150 km. Biết vận tốc ô tô thứ nhất lớn hơn vận tốc ô tô thứ hai là 10 km/h và ô tô thứ nhất đến B trước ô tô thứ hai là 30 phút. Tính vânl tốc của mỗi ô tô.
	4. Một chiếc thuyền đi trên dòng sông dài 50 km. Tổng thời gian xuôi dòng và ngược dòng là 4 giờ 10 phút. Tính vận tốc thực của thuyền biết rằng một chiếc bè thả nổi phải mất 10 giờ mới xuôi hết dòng sông.
	5. Một người đi xe đạp từ A đến B cách nhau 108 km. Cùng lúc đó một ô tô khởi hành từ B đến A với vận tốc hơn vận tốc xe đạp là 18 km/h. Sau khi hai xe gặp nhau xe đạp phải đi mất 4 giờ nữa mới tới B. Tính vận tốc của mỗi xe?
	6. Một ca nô xuôi dòng từ A đến B cách nhau 100 km. Cùng lúc đó một bè nứa trôi tự do từ A đến B. Ca nô đến B thì quay lại A ngay, thời gian cả xuôi dòng và ngược dòng hết 15 giờ. Trên đường ca nô ngược về A thì gặp bè nứa tại một điểm cách A là 50 km. Tìm vận tốc riêng của ca nô và vận tốc của dòng nước?
Dạng 3: Toán làm chung công việc
Ví dụ 1: Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ, người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc trong bao lâu?
Ví dụ 2: Hai thợ cùng đào một con mương thì sau 2giờ 55 phút thì xong việc. Nếu họ làm riêng thì đội 1 hoàn thành công việc nhanh hơn đội 2 là 2 giờ. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu giờ thì xong công việc?
Ví dụ 3: Hai người thợ cùng sơn cửa cho một ngôi nhà thì 2 ngày xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ người thứ hai làm tiếp trong 1 ngày nữa thì xong việc. Hỏi mỗi người làm một mình thì bao lâu xong công việc?
	1. Hai người thợ cùng làm một công việc thì xong trong 18 giờ. Nếu người thứ nhất làm trong 4 giờ, người thứ hai làm trong 7 giờ thì được 1/3 công việc. Hỏi mỗi người làm một mình thì mất bao lâu sẽ xong công việc?
	2. Để hoàn thành một công việc hai tổ phải làm trong 6 giờ. Sau 2 giờ làm chung thì tổ hai được điều đi làm việc khác. Tổ một đã hoàn thành công việc còn lại trong 10 giờ. Hỏi nếu mỗi tổ làm riêng thhì bao lâu xong công việc đó?
	3. Hai đội công nhân cùng đào một con mương. Nếu họ cùng làm thì trong 2 ngày sẽ xong công việc. Nếu làm riêng thì đội haihoàn thành công việc nhanh hơn đội một là 3 ngày. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu ngày để xong công việc?
	4. Hai chiếc bình rỗng giống nhau có cùng dung tích là 375 lít. ậ mỗi binmhf có một vòi nước chảy vào và dung lượng nước chảy trong một giờ là như nhau. Người ta mở cho hai vòi cùng chảy vào bình nhưng sau 2 giờ thì khoá vòi thứ hai lại và sau 45 phút mới tiếp tục mở lại. Để hai bình cùng đầy một lúc người ta phải tăng dung lượng vòi thứ hai thêm 25 lít/giờ. Tính xem mỗi giờ vòi thứ nhất chảy được bao nhiêu lít nước.
Dạng 4: Toán có nội dung hình học:
Vớ dụ 1: Tớnh cỏc kớch thước của hỡnh chữ nhật cú diện tớch 40 cm2 , biết rằng nếu tăng mỗi kớch thước thờm 3 cm thỡ diện tớch tăng thờm 48 cm2.
Vớ dụ 2: Cạnh huyền của một tam giỏc vuụng bằng 5 m. Hai cạnh gúc vuụng hơn kộm nhau 1m. Tớnh cỏc cạnh gúc vuụng của tam giỏc?
Bài 1: Một hỡnh chữ nhật cú đường chộo bằng 13 m, chiều dài hơn chiều rộng 7 m. Tớnh diện tớch hỡnh chữ nhật đú?
Bài 2: Một thửa ruộng hỡnh chữ nhật cú chu vi là 250 m. Tớnh diện tớch của thửa ruộng biết rằng chiều dài giảm 3 lần và chiều rộng tăng 2 lần thỡ chu vi thửa ruộng khụng thay đổi 
Bài 3: Một đa giỏc lồi cú tất cả 35 đường chộo. Hỏi đa giỏc đú cú bao nhiờu đỉnh?
Bài 4: Một cỏi sõn hỡnh tam giỏc cú diện tớch 180 m2 . Tớnh cạnh đỏy của sõn biết rằng nếu tăng cạnh đỏy 4 m và giảm chiều cao tương ứng 1 m thỡ diện tớch khụng đổi?
Bài 5: Một miếng đất hỡnh thang cõn cú chiều cao là 35 m hai đỏy lần lượt bằng 30 m và 50 m người ta làm hai đoạn đường cú cựng chiều rộng. Cỏc tim đừng lần lượt là đường trung bỡnh của hỡnh thang và đoạn thẳng nối hai trung điểm của hai đỏy. Tớnh chiều rộng đoạn đường đú biết rằng diện tớch phần làm đường bằng diện tớch hỡnh thang.
Dạng 5: Toán dân số, lãi suất, tăng trưởng
Vớ dụ 2: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do ỏp dụng kỹ thuật mới nờn tổ I đó sản xuất vượt mức kế hoạch là 18% và tổ II vượt mức 21%. Vỡ vậy trong thời gian quy định họ đó hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ là bao nhiờu.
Bài tập: 
	Bài 1: Dõn số của thành phố Hà Nội sau 2 năm tăng từ 200000 lờn 2048288 người. Tớnh xem hàng năm trung bỡnh dõn số tăng bao nhiờu phần trăm.
	Bài 2: Bỏc An vay 10 000 000 đồng của ngõn hàng để làm kinh tế. Trong một năm đầu bỏc chưa trả được nờn số tiền lói trong năm đầu được chuyển thành vốn để tớnh lói năm sau. Sau 2 năm bỏc An phải trả là 11 881 000 đồng. Hỏi lói suất cho vay là bao nhiờu phần trăm trong một năm?
	Bài 3: Theo kế hoạch hai tổ sản xuất 1000 sản phẩm trong một thời gian dự định. Do ỏp dụng kỹ thuật mới nờn tổ I vượt mức kế hoạch 15% và tổ hai vượt mức 17%. Vỡ vậy trong thời gian quy định cả hai tổ đó sản xuất được tất cả được 1162 sản phẩm. Hỏi số sản phẩm của mỗi tổ là bao nhiờu?
Dạng 6: Cỏc dạng toỏn khỏc
Bài 1: Một phũng họp cú 240 ghế được xếp thành cỏc dóy cú số ghế bằng nhau. Nếu mỗi dóy bớt đi một ghế thỡ phải xếp thờm 20 dóy mới hết số ghế. Hỏi phũng họp lỳc đầu được xếp thành bao nhiờu dóy ghế.
Bài 3: Người ta trồng 35 cõy dừa trờn một thửa đất hỡnh chữ nhật cú chiều dài 30 m chiều rộng là 20 m thành những hàng song song cỏch đều nhau theo cả hai chiều. Hàng cõy ngoài cựng trồng ngay trờn biờn của thửa đất. Hóy tớnh khoảng cỏch giữa hai hàng liờn tiếp?
Bài 4: Hai người nụng dõn mang 100 quả trứng ra chợ bỏn. Số trứng của hai người khụng bằng nhau nhưng số tiền thu được của hai người lại bằng nhau. Một người núi với người kia: “ Nếu số trứng của tụi bằng số trứng của anh thỡ tụi bỏn được 15 đồng ”. Người kia núi “ Nếu số trứng của tụi bằng số trứmg của anh tụi chỉ bỏn được đồng thụi”. Hỏi mỗi người cú bao nhiờu quả trứng?
Bài 5: Một hợp kim gồm đồng và kẽm trong đú cú 5 gam kẽm. Nếu thờm 15 gam kẽm vào hợp kim này thỡ được một hợp kim mới mà trong đú lượng đồng đó giảm so với lỳc đầu là 30%. Tỡm khối lượng ban đầu của hợp kim?

Tài liệu đính kèm:

  • docON THI VAO LOP 10(XX).doc