Bước 1: Đặt t = u(x) suy ra dt = u' (x)dx
Bước 2: Đổi cận : |x = b ; x = a suy ra t = u)b; t = u(a)
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
(tiếp tục tính tích phân mới)
Chuyên đề: TÍCH PHÂN VÀ ỨNG DỤNG I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG ĐN VÀ CÁC TÍNH CHẤT TÍCH PHÂN Bài 1: Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12). 13) 14) 15) 16) 17) 18) Bài 2: 1) 2) 3) 4) 5) 6) 7) 8) Bài 3: 1) Tìm các hằng số A,B để hàm số thỏa mãn đồng thời các điều kiện và 2) Tìm các giá trị của hằng số a để có đẳng thức : II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ : 1) DẠNG 1:Tính I = bằng cách đặt t = u(x) Cách thực hiện: Bước 1: Đặt Bước 2: Đổi cận : Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được (tiếp tục tính tích phân mới) Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 2) DẠNG 2: Tính I = bằng cách đặt x = Cách thực hiện: Bước 1: Đặt Bước 2: Đổi cận : Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được (tiếp tục tính tích phân mới) Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP VI PHÂN: Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) III. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN: Cách thực hiện: Bước 1: Đặt Bước 2: Thay vào công thức tích phân từng từng phần : Bước 3: Tính và Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) MỘT SỐ BÀI TOÁN TÍCH PHÂN QUAN TRỌNG VÀ ỨNG DỤNG Bài 1: 1) CMR nếu f(x) lẻ và liên tục trên [-a;a] (a>0) thì : 2) CMR nếu f(x) chẵn và liên tục trên [-a;a] (a>0) thì : Bài 2: 1) CMR nếu f(t) là một hàm số liên tục trên đọan [0,1] thì: a) b) ÁP DỤNG: Tính các tích phân sau: 1) 2) 3) 4) 5) 6) 7) 8) Bài 3:CMR nếu f(x) liên tục và chẵn trên R thì ; ÁP DỤNG : Tính các tích phân sau: 1) 2) 3) IV .ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG: Công thức: Tính diện tích của các hình phẳng sau: 1) (H1): 2) (H2) : 3) (H3): 4) (H4): 5) (H5): 6) (H6): 7) (H7): 8) (H8) : 9) (H9): 10) (H10): 11) 12) V. ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY. Công thức: Bài 1: Cho miền D giới hạn bởi hai đường : x2 + x - 5 = 0 ; x + y - 3 = 0 Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Bài 2: Cho miền D giới hạn bởi các đường : Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Oy Bài 3: Cho miền D giới hạn bởi hai đường : và y = 4 Tính thể tích khối tròn xoay được tạo nên do D quay quanh: a) Trục Ox b) Trục Oy Bài 4: Cho miền D giới hạn bởi hai đường : . Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox Bài 5: Cho miền D giới hạn bởi các đường : Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox ------------------------------Hết-------------------------------
Tài liệu đính kèm: