Bộ đề ôn thi tốt nghiệp THPT môn Toán - GV: Đỗ Minh Quang

Bộ đề ôn thi tốt nghiệp THPT môn Toán - GV: Đỗ Minh Quang

I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )

 Câu I ( 3,0 điểm )

 Cho hàm số y=x+2/1-x có đồ thị (C)

a. Khảo sát sự biến thiên và vẽ đồ thị (C) .

b. Chứng minh rằng đường thẳng (d) : y = mx- 4- 2m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi .

 

doc 31 trang Người đăng ngochoa2017 Lượt xem 1583Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề ôn thi tốt nghiệp THPT môn Toán - GV: Đỗ Minh Quang", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Giới thiệu đến các trường một số đề ôn thi tốt nghiệp môn Toán của thầy giáo Đỗ Minh Quang, do Tổ Toán THPT Quốc Học sưu tầm và giới thiệu. Đề nghị các trường tham khảo, thẩm định và cho ý kiến.
ĐỀ 1
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C) .
Chứng minh rằng đường thẳng (d) : y = mx 42m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi . .
 Câu II ( 3,0 điểm ) 
Giải phương trình 
Tính tìch phân : I = 
Viết phương trình tiếp tuyến với đồ thị , biết rằng tiếp tuyến này song song với đường thẳng (d) : .
Câu III ( 1,0 điểm ) 
 Cho hình chóp S,ABC . Gọi M là một điểm thuộc cạnh SA sao cho MS = 2 MA . Tính tỉ số thể tích của hai khối chóp M.SBC và M.ABC .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz và có trọng tâm G(1;2;) Hãy tính diện tích tam giác ABC . 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường ( C ) : y = , (d) : y = và trục hoành . Tính diện tích của hình phẳng (H) . 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ . Biết A’(0;0;0) , B’(a;0;0),D’(0;a;0) , A(0;0;a) với a>0 . Gọi M,N lần lượt là trung điểm các cạnh AB và B’C’ .
 a. Viết phương trình mặt phẳng (P) đi qua M và song song với hai đường thẳng AN và BD’ ..
 b. Tính góc và khoảng cách giữa hai đường thẳng AN và BD’ .
Câu V.b ( 1,0 điểm ) : 
 Tìm các hệ số a,b sao cho parabol (P) : tiếp xúc với hypebol (H) : Tại điểm M(1;1)
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
 x
 1 
 +
 +
y
 b) 1đ 
 Ta có : y = mx 42m 
 Hệ thức (*) đúng với mọi m 
 Đường thẳng y = mx 42m luôn đi qua 
 điểm cố định A(2; 4) thuộc (C) 
 ( Vì tọa độ điểm A thỏa mãn phương trình )
Câu II ( 3,0 điểm ) 
 a) 1đ Điều kiện : x > 1 .
 Đặt : thì 
 b) 1đ Đặt 
 c) 1đ Đường thẳng (d) 
 Gọi là tiếp tuyến cần tìm , vì song song với (d) nên tiếp tuyến có hệ số góc k = 
 Do đó : 
 là tiếp tuyến của ( C ) hệ sau có nghiệm 
Câu III ( 1,0 điểm ) 
 Ta có : 
 Từ (1) , (2) suy ra : 
II . PHẦN RIÊNG ( 3 điểm ) 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Vì các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz nên ta gọi A(x;0;0) , B(0;y;0),
 C(0;0;z) . Theo đề :
 G(1;2;) là trọng tâm tam giác ABC 0,5đ
 Vậy tọa độ của các đỉnh là A(3;0;0) , B(0;6;0), C(0;0;) 0,25đ 
 Mặt khác : 0,25đ
 Phương trình mặt phẳng (ABC) : 0,25đ
 nên 0,25đ
 Mặt khác : 
 0,25đ
 Vậy : 0,25đ
Câu V.a ( 1,0 điểm ) : 
 Phương trình hònh độ giao điểm của ( C ) và (d) : 
 2. Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 1đ Từ giả thiết ta tính được : B(a;0;a), 
 D(0;a;0) , A(0;0;a) , M( , N(a;;0) .
 Mặt phẳng (P) đi qua M và song song với 
 AN và BD’ nên có VTPT là
 Suy ra : 
:
 b) 1đ Gọi là góc giữa và . Ta có : 
Do đó : 
 Câu V.b ( 1,0 điểm ) : 
 Tiếp điểm M có hoành độ chính là nghiệm của hệ phương trình :
 (I) 
 Thay hoành độ của điểm M vào hệ phương trình (I) , ta được :
 Vậy giá trị cần tìm là 
*******************************************
ĐỀ SỐ 2
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số : y = – x3 + 3mx – m có đồ thị là ( Cm ) .
1.Tìm m để hàm số đạt cực tiểu tại x = – 1.
2.Khảo sát hàm số ( C1 ) ứng với m = – 1 .
3.Viết phương trình tiếp tuyến với ( C1 ) biết tiếp tuyến vuông góc với đường thẳng có pt .
Câu II ( 3,0 điểm )
1.Giải bất phương trình: 
2.Tính tích phân 
3.Cho hàm số y= có đồ thị là (C) .Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi (C) và các đường thẳng y =0,x = 0,x = 3 quay quanh 0x.
Câu III ( 1,0 điểm )
3.Cho hình vuông ABCD cạnh a.SA vuông góc với mặt phẳng ABCD,SA= 2a.
a.Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD
b.Vẽ AH vuông góc SC.Chứng minh năm điểm H,A,B,C,D nằm trên một mặt cầu.
II . PHẦN RIÊNG ( 3 điểm )
Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Cho D(-3;1;2) và mặt phẳng () qua ba điểm A(1;0;11),B(0;1;10),C(1;1;8).
1.Viết phương trình tham số của đường thẳng AC
2.Viết phương trình tổng quát của mặt phẳng ()
3.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt ()
Câu V.a ( 1,0 điểm ) :
Xác định tập hợp các điểm biểu diển số phức Z trên mặt phẳng tọa độ thỏa mãn điều kiện :
2.Theo chương trình nâng cao
Câu IVb/.
Cho A(1,1,1) ,B(1,2,1);C(1,1,2);D(2,2,1)
a.Tính thể tích tứ diện ABCD
b.Viết phương trình đường thẳng vuông góc chung của AB và CB
c.Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.
Câu Vb/.
a/.Giải hệ phương trình sau:
b/.Miền (B) giới hạn bởi đồ thị (C) của hàm số và hai trục tọa độ.
1).Tính diện tích của miền (B).
2). Tính thể tích khối tròn xoay sinh ra khi quay (B) quanh trục Ox, trục Oy.
*****************************************
ĐỀ SỐ 3
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số
1.Tìm m để hàm số có cực đại và cực tiểu
2.Khảo sát và vẽ đồ thị hàm số khi m = 3.
Câu II ( 3,0 điểm )
1.Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = ex ,y = 2 và đường thẳng x = 1.
2.Tính tích phân 
3.Giải bất phương trình log(x2 – x -2 ) < 2log(3-x)
Câu III ( 1,0 điểm )
Bài 4.Cho hình nón có bán kính đáy là R,đỉnh S .Góc tạo bởi đường cao và đường sinh là 600.
1.Hãy tính diện tích thiết diện cắt hình nón theo hai đường sinh vuông góc nhau.
2.Tính diện tích xung quanh của mặt nón và thể tích của khối nón.
II . PHẦN RIÊNG ( 3 điểm )
Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó 
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz cho ba điểm :
A(1;0;-1); B(1;2;1); C(0;2;0). Gọi G là trọng tâm của tam giác ABC
1.Viết phương trình đường thẳng OG
2.Viết phương trình mặt cầu ( S) đi qua bốn điểm O,A,B,C.
3.Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu ( S).
Câu V.a ( 1,0 điểm )
Tìm hai số phức biết tổng của chúng bằng 2 và tích của chúng bằng 3
2.Theo chương trình nâng cao
Câu IVb/.
Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A, B, C, D
với A(1;2;2), B(-1;2;-1), .
1.Chứng minh rằng ABCD là hình tứ diện và có các cặp cạnh đối bằng nhau.
2.Tính khoảng cách giữa hai đường thẳng AB và CD.
3.Viết phương trình mặt cầu (S) ngoại tiếp hình tứ diện ABCD.
Câu Vb/.Cho hàm số: (C)
1.Khảo sát hàm số
2.Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng 
*******************************************
ĐỀ SỐ 4
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số số y = - x3 + 3x2 – 2, gọi đồ thị hàm số là ( C)
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2.Viết phương trình tiếp tuyến với đồ thị ( C) tại điểm có hoành độ là nghiệm của phương trình y// = 0.
Câu II ( 3,0 điểm )
1.Tìm giá trị lớn nhất và nhỏ nhất của hàm số
a. trên b. f(x) = 2sinx + sin2x trên 
2.Tính tích phân 
3.Giải phương trình  :
Câu III ( 1,0 điểm )
Một hình trụ có diện tích xung quanh là S,diện tích đáy bằng diện tích một mặt cầu bán kính bằng a.Hãy tính
a)Thể tích của khối trụ
b)Diện tích thiết diện qua trục hình trụ
II . PHẦN RIÊNG ( 3 điểm )
Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó .
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz cho mặt cầu
( S) : x2 + y2 + z2 – 2x + 2y + 4z – 3 = 0 và hai đường thẳng và 
1.Chứng minh và chéo nhau
2.Viết phương trình tiếp diện của mặt cầu ( S) biết tiếp diện đó song song với hai đường thẳng và 
Câu V.a ( 1,0 điểm ).Tìm thể tích của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y= 2x2 và y = x3 xung quanh trục Ox
2.Theo chương trình nâng cao
Câu IVb/.
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P)và đường thẳng (d)
có phương trình là giao tuyến của hai mặt phẳng: và 2y-3z=0
1.Viết phương trình mặt phẳng (Q) chứa M (1;0;-2) và qua (d).
2.Viết phương trình chính tắc đường thẳng (d’) là hình chiếu vuông góc của (d) lên mặt phẳng (P).
Câu Vb/.
Tìm phần thực và phần ảo của số phức sau:(2+i)3- (3-i)3.
ĐỀ 5
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M(1;8) . .
 Câu II ( 3,0 điểm ) 
a) Giải bất phương trình 
b) Tính tìch phân : I = 
 c) Giải phương trình trên tập số phức .
Câu III ( 1,0 điểm ) 
Một hình trụ có bán kính đáy R = 2 , chiều cao h = . Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục của hình trụ . Tính cạnh của hình vuông đó .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) và hai mặt phẳng (P) :
 và (Q) : .
 a. Tính khoảng cách từ M đến mặt phẳng (Q) .
 b. Viết phương trình mặt phẳng ( R ) đi qua giao tuyến (d) của (P) và (Q) đồng thời vuông góc với mặt phẳng (T) : . 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường y = và trục hoành . Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành . 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : và mặt 
 phẳng (P) : .
 a. Tìm tọa độ giao điểm của đường thẳng (d) và mặt phẳng (P) .
 b. Tính góc giữa đường thẳng (d) và mặt phẳng (P) .
 c. Viết phương trình đường thẳng () là hình chiếu của đường thẳng (d) lên mặt phẳng (P).
Câu V.b ( 1,0 điểm ) : 
 Giải hệ phương trình sau : 
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a. (2d) 
x
 1 
y
 2
 2
(1đ) Gọi là tiếp tuyến đi qua M(1;8) có hệ số góc k .
Khi đó : 
 Phương trình hoành độ điểm chung của (C ) và :
 là tiếp tuyến của (C ) phương trình (1) có nghiệm kép 
 Vậy phương trình tiếp tuyến cần tìm là 
Câu II ( 3,0 điểm ) 
(1đ ) pt>0 ( vì 0 < sin2 < 1 )
(1đ) I = =
(1đ) nên 
Phương trình có hai nghiệm : 
Câu III ( 1,0 điểm ) 
Xét hình vuông có cạnh AD không song song và vuông
 góc với trục OO’ của hình trụ . Vẽ đường sinh AA’ 
Ta có : CD(AA’D) nên A’C là đường 
 kính của đường tròn đáy .
 Do đó : A’C = 4 . Tam giác vuông 	AA’C cho :
 Vì AC = AB . S uy ra : AB = 3 .
 Vậy cạnh hình vuông bằng 3 .
II . PHẦN RIÊNG ( 3 điểm ) 
1, Theo chương trình chuẩn :
Câu IV.a ( 2,0 đ ... 
 b) 1đ I = 
 c) 1đ Ta có : 
 + + 
Câu III ( 1,0 điểm ) 
 ¡ 
 ¡ Gọi O , O’ lần lượt là tâm của đường tròn ngoại tiếp 
 thí tâm của mặt cầu (S) ngoại 
 tiếp hình lăng trụ đều ABC.A’B’C’ là trung điểm 
 I của OO’ .
 Bán kính 
 Diện tích : 
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 a) 1đ Thay x.y.z trong phương trình của () vào phương trình của () ta được :
 vô nghiệm .
 Vậy và không cắt nhau .
 Ta có : có VTCP ; có VTCP 
 Vì nên và vuông góc nhau .
 b) 1đ Lấy , 
 Khi đó : 
 MN vuông với 
 là phưong trình đường thẳng cần tìm .
Câu V.a ( 1,0 điểm ) : 
 Vì .
 Suy ra : 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 0,75đ 
 có vtpt 
 Do và nên () // () .
 Do nên () cắt () .
 b) 0,5 đ Vì 
 c) 0,75đ phương trình 
 Gọi ; 
 Theo đề : . 
 Vậy 
 Câu V.b ( 1,0 điểm ) : 
 Gọi z = a + bi , trong đó a,b là các số thực . ta có : và 
 Khi đó : Tìm các số thực a,b sao cho : 
 Giải hệ trên ta được các nghiệm (0;0) , (1;0) , , .
ĐỀ 9
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M (;0) . .
 Câu II ( 3,0 điểm ) 
Cho . Tính lg7 và lg5 theo a và b .
Tính tìch phân : I = 
 c. Tìm giá trị lớn nhất và giá trị nhỏ nếu có của hàm số .
Câu III ( 1,0 điểm ) 
 Tính tæ soá theå tích cuûa hình laäp phöông vaø theå tích cuûa hình truï ngoaïi tieáp hình laäp phöông ñoù .
II . PHẦN RIÊNG ( 3 điểm ) 
Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với các đỉnh là A(0;;1) , 
 B(;1;2) , C(1;;4) .
 a. Viết phương trình chính tắc của đường trung tuyến kẻ từ đỉnh A của tam giác .
 b. Viết phương trình tham số của đường thẳng đi qua điểm C và vuông góc với mặt phẳng (OAB) với O là gốc tọa độ . 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường (C) : , hai đường thẳng x = 0 ,
 x = 1 và trục hoành . Xác định giá trị của a để diện tích hình phẳng (H) bằng lna .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho điểm M ( và hai mặt phẳng () : 
 , (.
 a. Chứng tỏ rằng hai mặt phẳng () và () cắt nhau . Viết phương trình tham số của 
 giao tuyến của hai mặt phằng đó .
 b. Tìm điểm H là hình chiếu vuông góc của điểm M trên giao tuyến .
Câu V.b ( 1,0 điểm ) : 
Cho hình phẳng (H) giới hạn bởi các đường (C) : y = và (G) : y = . Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành . 
 . . . . . . . .Hết . . . . . . .
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
x
 0 1 
 + 0 0 + 0 
y
 1 1 
 0 
 b) 1đ Gọi () là tiếp tuyến cần tìm có hệ số góc k 
 nên 
 () là tiếp tuyến của ( C ) Hệ sau có nghiệm :
 Thay (2) vào (1) ta được : 
Câu II ( 3,0 điểm ) 
 a) 1đ Ta có : a = lg392 = 
 (1)
 b = lg112 = 
 (2)
 Từ (1) và (2) ta có hệ : 
 b) 1d Ta có I = 
 . Cách khác đặt t = 
 Đặt : 
 nên 
 Vậy : 
 c) 1đ Tập xác định : 
 , 
 Bảng biến thiên : 
x
 1 
 + 0 
y
 1
 Vaäy : Haøm soá ñaõ cho ñaït : 
Câu III ( 1,0 điểm ) 
 Nếu hình lập phương có cạnh là a thì thể tích 
của nó là 
 Hình trụ ngoại tiếp hình lập phương đó có bán 
kính và chiều cao h = a nên có thể
 tích là . Khi đó tỉ số thể tích : 
II . PHẦN RIÊNG ( 3 điểm ) 
Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 a) 1đ Trung điểm của cạnh BC là M() 
 Trung tuyến 
 b) 1đ 
Mặt phẳng (OAB) : 
Câu V.a ( 1,0 điểm ) : 
 Vì hàm số liên tục , không âm trên [ 0; 1 ] nên hình phẳng (H) có diện tích :
 Theo đề : 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 1đ
 + Mặt phẳng () có VTPT , mặt phẳng () có VTPT 
 Vì nên suy ra () và () cắt nhau .
 + Gọi là VTCP của đường thẳng thì vuông góc và nên ta có :
 Vì . Lấy M(x;y;x) thì tọa độ của điểm M thỏa mãn hệ :
 được :
 Vậy 
 b) 1đ Gọi H là hình chiếu vuông góc của M trên đường thẳng () .
 Ta có : MH . Suy ra : , với (Q) là mặt phẳng đi qua điểm M và vuông 
 với . Do đó 
 Thay x,y,z trong phương trình () vào phương trình mặt phẳng (Q) ta được :
Câu V.b ( 1,0 điểm ) : 
Phương trình hoành độ giao điểm của ( C) và (G) : 
 Khi đó (H) giới hạn bởi các đường thẳng x = 0 , x = 1 , ( C) và (G) . 
 Vì nên gọi lần lượt là thể tích sinh ra bởi ( C) và (G) .
 Khi đó : 
********************************
ĐỀ 10
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Cho họ đường thẳng với m là tham số . Chứng minh rằng luôn cắt đồ thị (C) tại một điểm cố định I .
 Câu II ( 3,0 điểm ) 
a) Giải bất phương trình 
b) Cho với f là hàm số lẻ. Hãy tính tích phân : I = .
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất nếu có của hàm số .
Câu III ( 1,0 điểm ) 
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a . Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB . Mặt bên (AA’C’C) tạo với đáy một góc bằng . Tính thể tích của khối lăng trụ này .
II . PHẦN RIÊNG ( 3 điểm ) 
Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó. 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz .Viết phương trình mặt phẳng (P) qua O , vuông góc với mặt 
phẳng (Q) : và cách điểm M(1;2;) một khoảng bằng . 
Câu V.a ( 1,0 điểm ) : 
 Cho số phức . Tính giá trị của .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : và mặt phẳng
 (P) : .
 a. Viết phương trình mặt cầu có tâm nằm trên (d) , bán kính bằng 3 và tiếp xúc với (P) .
 b. Viết phương trình đường thẳng () qua M(0;1;0) , nằm trong (P) và vuông góc với 
 đường thẳng (d) .
Câu V.b ( 1,0 điểm ) : 
 Trên tập số phức , tìm B để phương trình bậc hai có tổng bình phương hai nghiệm bằng . 
 . . . . . . . .Hết . . . . . . .
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
x
 0 
 + 0 0 +
 0 
 b) 1đ Ta có : Phương trỉnh hoành độ điểm chung của (C) và :
 Khi x = 2 ta có 
 Do đó luôn cắt (C) tại điểm cố định I(2;16 ) .
 Câu II ( 3,0 điểm ) 
 a) 1đ Vì nên do 
 b) 1đ Đổi biến : u = .
 Đổi cận : § x = 
 § x = 0 
 Vì f là hàm số lẻ nên 
 Khi đó : I = 
 c) 1đ Tập xác định 
 , ta có : (1)
 (2)
 Từ (1) và (2) suy ra : 
 Vậy : 
Câu III ( 1,0 điểm ) 
 Gọi H là trung điểm của AB . Ta có A’H (ABC) .Kẻ HE AC thì là góc 
 giữa hai mặt (AA’C’C) và (ABC) . Khi đó : A’H = HE = ( bằng đường cao ABC) . Do đó : 
II . PHẦN RIÊNG ( 3 điểm ) 
1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Phương trình mặt phẳng (P) qua O nên có dạng : Ax + By + Cz = 0 với 
 Vì (P) (Q) nên 1.A+1.B+1.C = 0 A+B+C = 0 (1)
 Theo đề : 
 d(M;(P)) = (2)
 Thay (1) vào (2) , ta được : 8AB+5
 § thì (P) : 
 § . Chọn A = 5 , B = thì (P) : 
 Câu V.a ( 1,0 điểm ) : 
 Ta có : nên 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 1đ 
 Tâm mặt cầu là nên I(1+2t;2t;) 
 Theo đề : Mặt cầu tiếp xúc với (P) nên 
 § t = 0 thì I(1;0;) 
 § t = thì I(;) 
 b) 1đ VTCP của đường thẳng (d) là 
 VTPT của mặt phẳng là 
 Gọi là VTCP của đường thẳng () thì vuông góc với do đó ta chọn 
 .
 Vậy 
Câu V.b ( 1,0 điểm ) : 
 Gọi là hai nghiệm của phương trình đã cho và với .
Theo đề phương trình bậc hai có tổng bình phương hai nghiệm bằng . 
 nên ta có : hay hay 
 Suy ra : .
 Hệ phương trình có nghiệm (a;b) là . Vậy : , 
ĐỀ 11
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
Dùng đồ thị (C) , xác định k để phương trình sau có đúng 3 nghiệm phân biệt 
 .
 Câu II ( 3,0 điểm ) 
Giải phương trình 
Cho hàm số . Tìm nguyên hàm F(x ) của hàm số , biết rằng đồ thị của hàm số F(x) đi qua điểm M(; 0) .
Tìm giá trị nhỏ nhất của hàm số với x > 0 .
Câu III ( 1,0 điểm ) 
Cho hình choùp tam giaùc ñeàu coù caïnh ñaùy baèng vaø ñöôøng cao h = 1 . Hãy tính diện tích của mặt cầu ngoại tiếp hình chóp .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d) : và mặt phẳng
 (P) : 
 a. Chứng minh rằng (d) cắt (P) tại A . Tìm tọa độ điểm A .
 b. Viết phương trình đường thẳng () đi qua A , nằm trong (P) và vuông góc với (d) .
Câu V.a ( 1,0 điểm ) : 
 Tính diện tích hình phẳng giới hạn bởi các đường : và trục hoành .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : và mặt phẳng 
 (P) : 
 a. Chứng minh rằng (d) nằm trên mặt phẳng (P) .
 b. Viết phương trình đường thẳng () nằm trong (P), song song với (d) và cách (d) một khoảng là .
Câu V.b ( 1,0 điểm ) : 
 Tìm căn bậc hai cũa số phức 
. . . . . . . .Hết . . . . . . .
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a. (2d) 
x
 0 2 
 0 + 0 
y
 3
(1đ) pt 
Đây là pt hoành độ điểm chung của (C) và đường thẳng 
 Căn cứ vào đồ thị , ta có : 
Phương trình có ba nghiệm phân biệt 
Câu II ( 3,0 điểm ) 
( 1đ ) 
(1đ) Vì F(x) = . Theo đề : 
(1đ) Với x > 0 . Áp dụng bất đẳng thức Côsi :
 . Dấu “=” xảy ra khi 
 . Vậy : 
Câu III ( 1,0 điểm ) 
 Goïi hình choùp ñaõ cho laø S.ABC vaø O laø taâm ñöôøng troøn ngoaïi tieáp cuûa ñaùy ABC .
 Khi ñoù : SO laø truïc ñöôøng troøn ñaùy (ABC) . Suy ra : SO(ABC) .
Trong mp(SAO) döïng ñöôøng trung tröïc cuûa caïnh SA , caét SO taïi I .
 Khi ñoù : I laø taâm cuûa maët caàu ngoaïi tieáp S.ABC 
Tính baùn kính R = SI .
Ta coù : Töù giaùc AJIO noäi tieáp ñöôøng troøn neân : SI = =
SAO vuoâng taïi O . Do ñoù : SA = ==SI = =
Diện tích mặt cầu : 
II . PHẦN RIÊNG ( 3 điểm ) 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
(0,5 đ) A(5;6;9) 
(1,5đ)
 + Vectơ chỉ phương của đường thẳng (d) : 
+ Vectơ pháp tuyến của mặt phẳng (P) : 
+ Vectơ chỉ phương của đường thẳng () : 
+ Phương trình của đường thẳng () : 
Câu V.a ( 1,0 điểm ) : 
+ Diện tích : 	+ Đặt : 
+ => 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
(0,5đ) Chọn A(2;3;3),B(6;5;2)(d) mà A,B nằm trên (P) nên (d) nằm trên (P) .
 b.(1,5đ) Gọi vectơ chỉ phương của () qua A và vuông góc với (d) thì nên ta chọn . Ptrình của đường thẳng () : 
 () là đường thẳng qua M và song song với (d ). Lấy M trên () thì M(2+3t;39t;3+6t) . 
 Theo đề : 
 + t = M(1;6;5) 
 + t = M(3;0;1) 
Câu V.b ( 1,0 điểm ) : 
Gọi x + iy là căn bậc hai của số phức , ta có :
 hoặc 
 (loại) hoặc 
 Vậy số phức có hai căn bậc hai : 
****************************************

Tài liệu đính kèm:

  • docCac de on TN THPT co dap an.doc