Bài tập Hình học không gian 12

Bài tập Hình học không gian 12

HÌNH HỌC KHÔNG GIAN

1.Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại B. Biết BB’ = AB = h và góc của B’C với mặt đáy bằng .

a) CMR: g(BCA) = g(B’CB) và tính thể tích của khối lăng trụ.

b) Tính diện tích thiết diện tạo nên do mp(ACB’) cắt hình lăng trụ.

2. Một hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, cạnh bên BB’ = a, chân đường vuông góc hạ từ B’ xuống đáy ABC trùng với trung điểm I của cạnh AC.

a) Tính góc giữa cạnh bên với đáy và tính thể tích của lăng trụ.

b) CMR: mặt bên AA’C’C là hình chữ nhật.

 

doc 3 trang Người đăng ngochoa2017 Lượt xem 1804Lượt tải 0 Download
Bạn đang xem tài liệu "Bài tập Hình học không gian 12", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
HÌNH HỌC KHÔNG GIAN
1.Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại B. Biết BB’ = AB = h và góc của B’C với mặt đáy bằng .
a) CMR: g(BCA) = g(B’CB) và tính thể tích của khối lăng trụ.
b) Tính diện tích thiết diện tạo nên do mp(ACB’) cắt hình lăng trụ.
2. Một hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, cạnh bên BB’ = a, chân đường vuông góc hạ từ B’ xuống đáy ABC trùng với trung điểm I của cạnh AC.
a) Tính góc giữa cạnh bên với đáy và tính thể tích của lăng trụ.
b) CMR: mặt bên AA’C’C là hình chữ nhật.
3) Hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AC = b, góc C = 600 .Đường chéo BC’ của mặt bên (BB’C’C) tạo với mặt phẳng (AA’C’C) một góc 300.
a) Tính độ dài đoạn AC’
b) Tính thể tích của lăng trụ.
4) Cho khối hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng a và ba góc ở đỉnh A đều bằng 600. Tính thể tích của khối hộp đó theo a.
5) Cho khối lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, điểm A’ cách đều ba điểm A, B, C, cạnh bên AA’ tạo với mặt đáy một góc 600 .
a) Tính thể tích của khối lăng trụ đó.
b) CMR: mặt bên BCC’B’ là một hình chữ nhật.
c) Tính tổng diện tích các mặt bên của lăng trụ(Gọi là diện tích xung quanh).
6) Cho khối lăng trụ tam giác đều ABC.A’B’C’ . Gọi M là trung điểm của AA’. Mặt phẳng đi qua M, B’, C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.
7) Cho khối lăng trụ tứ giác đều ABCD.A’B’C’D’ có chiều cao bằng a và góc của hai đường chéo của hai mặt bên kề nhau phát xuất từ một đỉnh bằng .
a) Tính thể tích của lăng trụ.
b) Gọi M và N là trung điểm của BB’ và DD’, tính góc của mp(AMN) và mặt đáy của lăng trụ.
8) Cho hình lập phương ABCD.A’B’C’D’ có đoạn nối hai tâm của hai mặt bên kề nhau là 
a) Tính thể tích của hình lập phương.
b) Lấy điểm M trên BC, mặt phẳng(MB’D) cắt A’D’ tại N. Chứng minh MN.
9) Cho khối lăng trụ xiên ABC.A’B’C’ có đáy ABC là tam giác đều tâm O và hình chiếu C’ trên đáy (ABC) trùng với O. Cho khoảng cách từ O đến CC’ là a và số đo nhị diện cạnh CC’ là 1200. Tính thể tích khối lăng trụ.
10) Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a.
a) Tính thể tích khối tứ diện A’.BB’C
b) Mặt phẳng đi qua A’B’ và trọng tâm tam giác ABC, cắt AC và BC lần lượt tại E và F. Tính thể tích khối chóp C.A’B’FE.
11) Cho hình hộp ABCD.A’B’C’D’. Tính tỉ số thể tích của khối tứ diện ACB’D’ và thể tích khối hộp.
12) Cho hình hộp ABCD.A’B’C’D’, gọi O là giao điểm của AC và BD. Tính tỉ số thể tích của khối chóp O.A’B’C’D’ và khối hộp đã cho.
13) Đáy của khối chóp là một tam giác vuông cân có cạnh góc vuông bằng a. Mặt bên qua cạnh huyền vuông góc với đáy, mỗi mặt bên tạo với đáy một góc 450.
a) CMR chân đường cao khối chóp trùng với trung điểm cạnh huyền.
b) Tính thể tích khối chóp.
14) Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB bằng . CMR: đường cao của khối chóp h = và tính thể tích khối chóp.
15) Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên với đáy bằng 600.
a) Tính thể tích khối chóp.
b) Tính góc do mặt bên tạo với đáy.
c) Xác định tâm của mặt cầu ngoại tiếp khối chóp và tính bán kính của mặt cầu đó.
16) Cho tứ diện S.ABC có đáy ABC là tam giác cân tại B, AC = a, SA(ABC), góc giữa cạnh bên SB và đáy bằng 600.
a) Chứng minh BC(SAB)
b) Tính thể tích tứ diện SABC.
17) Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a và góc giữa mặt bên hợp với đáy một góc 600 . 
a) Tính thể tích khối chóp.
b) Tính khoảng cách giữa AB và mp(SCD).
18) Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA(ABC), góc giữa mặt bên (SBC) và đáy bằng 600. 
a) Tính thể tích khối chóp.
b) Xác định tâm của mặt cầu ngoại tiếp khối chóp và tính bán kính của mặt cầu đó.
19) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, gọi I là trung điểm của AB, SI(ABCD), góc giữa mặt bên (SCD) và đáy bằng 600. Tính thể tích khối chóp.
20) Cho hình chóp tam giác O.ABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau và OA = a, 
OB = b, OC = c. Tính đường cao OH của hình chóp.
21) Cho tam giác ABC vuông cân ở A và AB = a. Trên đường thẳng qua C và vuông góc với (ABC) lấy điểm D sao cho CD = a. Mặt phẳng qua C vuông góc với BD, cắt BD tại F và cắt AD tại E. Tính thể tích khối tứ diện CDEF.
22) Cho hình chóp tam giác đều S.ABC có cạnh đáy AB = a. Các cạnh bên SA, SB, SC tạo với đáy một góc 60o. Gọi D là giao điểm của SA với mặt phẳng qua BC và vuông góc với SA.
a) Tính tỉ số thể tích của hai khối chóp S.DBC và S.ABC.
b) Tính thể tích của khối chóp S.DBC.
23) Cho hình chóp tam giác S.ABC có AB = 5a, BC = 6a, CA = 7a. Các mặt bên SAB, SBC, SCA tạo với đáy một góc 60o. Tính thể tích của khối chóp.
24) Cho hình chóp SABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy và AB = a, AD = b, SA = c. Lấy các điểm B’, D’ theo thứ tự thuộc SB, SD sao cho AB’SB, AD’SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.
25) Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy một góc 60o. Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF.
26) Cho hình nón tròn xoay có đường cao h = 20 cm, bán kính đáy r = 25 cm.
a) Tính diện tích xung quanh của hình nón đã cho.
b) Tính thể tích của khối nón.
c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12 cm. Tính diện tích thiết diện đó.
27) Một hình trụ có bán kính đáy r = 5cm và có khoảng cách giữa hai đáy bằng 7cm.
a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ.
b) Cắt khối trụ bởi mặt phẳng song song vói trục và cách trục 3cm. Tính diện tích của thiết diện được tạo nên.
28) Cắt hình nón bằng một mặt phẳng qua trục của nó ta được một thiết diện là một tam giác đều cạnh 2a.Tính diện tích xung quanh và thể tích của hình nón đó.
29) Một hình trụ có bán kính đáy r và chiều cao h = r.
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tính thể tích của khối trụ.
c) Cho hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 300 . Tính khoảng cách giữa AB và trục của hình trụ.
30) Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a.
a) Tính diện tích xung quanh, diện tích đáy và thể tích khối nón.
b) Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc 600. Tính diện tích tam giác SBC.
31) Mặt phẳng đi qua trục của hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh 2R.
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tính thể tích của khối trụ.
c) Tính thể tích khối lăng trụ tứ giác đều nội tiếp hình trụ.
32) Một khối nón có góc ở đỉnh bằng 1200 và có bán kính đáy bằng r . Tính diện tích của thiết diện đi qua hai đường sinh vuông góc với nhau.
33) Một khối lăng trụ đứng có chiều cao h và có đáy là một tam giác đều cạnh a. Tính thể tích của khối trụ ngoại tiếp khối lăng trụ này.
34) Một khối tứ diện đều có cạnh bằng a nội tiếp trong một khối nón. Tính thể tích của khối nón đó.
35) Một khối trụ gọi là nội tiếp trong một khối cầu nếu hai đường tròn đáy của khối trụ nằm trên mặt của khối cầu.
a) Tính diện tích xung quanh và thể tích của khối trụ nội tiếp trong một khối cầu bán kính R nếu biết đường cao của khối trụ là h.
b) Tính giá trị lớn nhất của thể tích khối trụ nội tiếp trong khối cầu bán kính R cho trước.
35) Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Tính diện tích xung quanh và thể tích của của khối trụ có đường tròn của hai đáy ngoại tiếp các hình vuông ABCD và A’B’C’D’.
b) Tính diện tích xung quanh và thể tích của khối nón có đỉnh là tâm O của hình vuông ABCD và đáy là đường tròn nội tếp hình vuông A’B’C’D’.

Tài liệu đính kèm:

  • docBai tap HHKG 12.doc