10 Đề thi thử Đại học môn Toán

10 Đề thi thử Đại học môn Toán

Đề số 1

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH

Câu I: (2đ) 1/ Khảo sát hàm số y = x2+x-1/x-1(C)

 2/ Tìm các điểm trên đồ thị (C) mà tiếp tuyến tại các điểm ấy vuông góc với đường thẳng đi qua 2 điểm cực đại và cực tiểu của (C).

 

doc 25 trang Người đăng ngochoa2017 Lượt xem 1595Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "10 Đề thi thử Đại học môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề số 1
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 1/ Khảo sát hàm số y = (C)
	2/ Tìm các điểm trên đồ thị (C) mà tiếp tuyến tại các điểm ấy vuông góc với đường thẳng đi qua 2 điểm cực đại và cực tiểu của (C).
Câu II: (2đ) 1/ Giải phương trình: 2sinx + cosx = sin2x + 1 	2/ Giải bất pt: + 2x ³ 3
Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng D1, D2 và mp(P) có pt: D1: ,
	D2: , mp(P): 2x - y - 5z + 1 = 0
	1/ Cmr D1 và D2 chéo nhau. Tính khoảng cách giữa 2 đường thẳng ấy.
	2/ Viết pt đường thẳng D vuông góc với mp(P), đồng thời cắt cả D1 và D2.
Câu IV: (2đ) 1/ Tính tích phân I = 
	2/ Cho các số thực x, y thay đổi thỏa điều kiện: y £ 0, x2 + x = y + 12. Tìm GTLN, GTNN của biểu thức A = xy + x + 2y + 17
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mpOxy, cho 2 đường thẳng d1: 2x + y - 1 = 0, d2: 2x - y + 2 = 0. Viết pt đường tròn (C) có tâm nằm trên trục Ox đồng thời tiếp xúc với d1 và d2.
2/ Tìm số tự nhiên n thỏa mãn đẳng thức: 
Câu V.b: (2 điểm) 1/ Giải phương trình: (1)
2/ Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh SA vuông góc với đáy, = 600, BC= a, SA = a. Gọi M là trung điểm cạnh SB. Chứng minh (SAB) ^ (SBC). Tính thể tích khối tứ diện MABC.
Đề số 2
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) Cho hàm số y = 
	1/ Khảo sát hàm số khi m = -1	2/ Tìm m sao cho hàm số đạt cực đại tại x = 2
Câu II: (2đ) 1/ Giải hệ pt: 	2/ Giải pt: 
Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng d1: và d2: 
	1/ Cmr d1 và d2 đồng phẳng và viết pt mp(P) chứa d1 và d2.
	2/ Tìm thể tích phần không gian giới hạn bởi mp(P) và ba mặt phẳng tọa độ.
Câu IV: (2đ) 1/ Tính tích phân I = 
2/ Cho x, y, z > 0 và xyz = 1. Chứng minh rằng x3 + y3 + z3 ≥ x + y + z.
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mpOxy, cho 2 đường thẳng d1: 2x - 3y + 1 = 0, d2: 4x + y - 5 = 0. Gọi A là giao điểm của d1 và d2. Tìm điểm B trên d1 và điểm C trên d2 sao cho DABC có trọng tâm G(3; 5).
2/ Giải hệ phương trình: 
Câu V.b: (2 điểm) 1/ Giải hệ phương trình: 
2/ Cho hình lập phương ABCD.A’B’C’D’. Chứng minh rằng BD’ ^ mp(ACB’)
Đề số 3
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) Cho hàm số y = x3 - mx2 + (2m - 1)x - m + 2
	1/ Khảo sát hàm số khi m = 2	2/ Tìm m sao cho hàm số có 2 cực trị có hoành độ dương.
Câu II: (2đ) 1/ Giải phương trình: cos4x + sin4x = cos2x
	2/ Giải bất phương trình: > x - 3
Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng d1: và d2: 
	1/ Cmr d1 và d2 không cắt nhau nhưng vuông góc với nhau. 
	2/ Viết phương trình đường vuông góc chung của d1 và d2.
Câu IV: (2đ) 1/ Tính tích phân I = 
	2/ Cho x, y, z > 0 và x + y + z = xyz. Tìm giá trị nhỏ nhất của biểu thức A = xyz.
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Viết pt các tiếp tuyến của elip , biết rằng tiếp tuyến đi qua A(4; 3).
	2/ Cho hai đường thẳng d1, d2 song song với nhau. Trên đường thẳng d1 lấy 10 điểm phân biệt, trên đường thẳng d2 lấy 8 điểm phân biệt. Hỏi có bao nhiêu tam giác có đỉnh là các điểm đã chọn trên d1 và d2?
Câu V.b: (2 điểm) 1/ Giải phương trình: 9x + 6x = 22x + 1
2/ Cho khối lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a, cạnh bên AA’ = a. Gọi E là trung điểm của AB. Tính khỏang cách giữa A’B’ và mp(C’EB)
Đề số 4
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 	1/ Khảo sát hàm số y = (C)
	2/ Cho d1: y = -x + m, d2: y = x + 3. Tìm tất cả các giá trị của m để (C) cắt d1 tại 2 điểm phân biệt A, B đối xứng nhau qua d2.
Câu II: (2đ) 1/ Giải phương trình: 4cos3x - cos2x - 4cosx + 1 = 0
	2/ Giải phương trình: (1)
Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng d1: và d2: 
	1/ Viết pt mp(α) chứa d1 và song song với d2. Tính khoảng cách giữa d1 và d2. 
	2/ Viết phương trình đường thẳng D song song với trục Oz và cắt cả d1 và d2.
Câu IV: (2đ) 1/ Tính tích phân I = 
	2/ Gọi x1, x2 là 2 nghiệm của pt: 2x2 + 2(m + 1)x + m2 + 4m + 3 = 0. Với giá trị nào của m thì biểu thức
	A = đạt giá trị lớn nhất.
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Cho đường tròn (C): x2 + y2 - 2x - 4y + 3 = 0. Lập pt đường tròn (C’) đối xứng với (C) qua đường thẳng D: x - 2 = 0
	2/ Có bao nhiêu số tự nhiên gồm 5 chữ số trong đó chữ số 0 có mặt đúng 2 lần, chữ số 1 có mặt đúng 1 lần, hai chữ số còn lại phân biệt? 
Câu V.b: (2 điểm) 1/ Giải phương trình: (HD: Þ )
2/ Trong mp(P) cho hình vuông ABCD. Trên đường thẳng Ax vuông góc với mp(P) lấy một điểm S bất kỳ, dựng mp(Q) qua A và vuông góc với SC. Mp(Q) cắt SB, SC, SD lần lượt tại B’, C’, D’. Cmr các điểm A, B, C, D, B’, C’, D’ cùng nằm trên một mặt cầu cố định.
Đề số 5
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 	1/ Khảo sát hàm số y = (C)
	2/ Tìm tất cả các giá trị m để pt: x2 - (m + 5)x + 4 + 5m = 0 có nghiệm xÎ[1; 4]
Câu II: (2đ) 1/ Giải phương trình: sin2x + 2cosx + 2sin(x + ) + 3 = 0 
	2/ Giải bất phương trình: x2 + 2x + 5 ≤ 4 
Câu III: (2 đ) Trong kgOxyz, cho 4 điểm A(0; -1; 1), B(0; -2; 0), C(2; 1; 1), D(1; 2; 1)
	1/ Viết pt mp(α) chứa AB và vuông góc với mp(BCD) 
	2/ Tìm điểm M thuộc đường thẳng AD và điểm N thuộc đường thẳng chứa trục Ox sao cho MN là đọan vuông góc chung của hai đường thẳng này.
Câu IV: (2đ) 1/ Tính tích phân I = 
	2/ Cho x, y là 2 số thực dương thỏa mãn điều kiện x + y = . Tìm GTNN của biểu thức A = 
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mpOxy, cho DABC có trục tâm H, pt các đường thẳng AB và AC lần lượt là: 4x - y - 3 = 0, x + y - 7 = 0. Viết pt đường thẳng chứa cạnh BC.
	2/ Khai triển biểu thức P(x) = (1 - 2x)n ta được P(x) = a0 + a1x + a2x2 +  + anxn. Tìm hệ số của x5 biết:
a0 + a1 + a2 = 71. 
Câu V.b: (2 điểm) 1/ Giải hệ phương trình: 
2/ Tính thể tích của khối nón tròn xoay biết khoảng cách từ tâm của đáy đến đường sinh bằng và thiết diện qua trục là một tam giác đều.
Đề số 6
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 	1/ Khảo sát hàm số y = x3 - 6x2 + 9x - 1 (C)
	2/ Gọi d là đường thẳng đi qua điểm A(2; 1) và có hệ số góc m. Tìm m để đường thẳng d cắt đồ thị (C) tại 3 điểm phân biệt.
Câu II: (2đ) 1/ Giải phương trình: 2x + 1 + x2 - x3 + x4 - x5 +  + (-1)n.xn +  = (với <1, n≥2, nÎN) 
	2/ Giải bất phương trình: 
Câu III: (2 đ) Trong kgOxyz, cho đường thẳng d: và mp(P): x - y - z - 1 = 0
	1/ Lập pt chính tắc của đường thẳng D đi qua A(1; 1; -2) song song với (P) và vuông góc với d. 
	2/ Lập pt mặt cầu (S) có tâm thuộc d, bán kính bằng 3 và tiếp xúc với (P).
Câu IV: (2đ) 1/ Tính tích phân I = 	2/ Tìm GTLN và GTNN của hàm số: y = 
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x + y - 3 = 0 và 2 điểm A(1; 1), B(-3; 4). Tìm tọa độ điểm M thuộc đường thẳng d sao cho khoảng cách từ M đến đường thẳng AB bằng 1.
	2/ Cho A =. Sau khi khai triển và rút gọn thì biểu thức A sẽ gồm bao nhiêu số hạng? 
Câu V.b: (2 điểm) 1/ Giải phương trình: logx3 - 3log27x = 2log3x
2/ Cho hình lập ABCD.A1B1C1D1 cạnh a. Gọi O1 là tâm của hình vuông A1B1C1D1. Tính thể tích của khối tứ diện A1O1BD.
Đề số 7
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) Cho hàm số y = x3 - 3mx2 + (m2 + 2m - 3)x + 3m + 1	
	1/ Tìm m để đồ thị hàm số có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung.
	2/ Khảo sát hàm số khi m = 1
Câu II: (2đ) 1/ Giải phương trình: 
	2/ Giải hệ phương trình: 
Câu III: (2 đ) Trong kgOxyz, cho đường thẳng d: và mp(α): 2x + y - z - 2 = 0
1/ Tìm tọa độ giao điểm M của d và (α). Viết pt đường thẳng D nằm trong mp(α) đi qua M và vuông góc với d. 
	2/ Cho điểm A(0; 1; 1). Hãy tìm tọa độ điểm B sao cho mp(α) là mặt trung trực của đoạn thẳng AB.
Câu IV: (2đ) 1/ Tính tích phân I = 
	2/ Cho 3 số dương x, y, z thỏa x + y + z ≤ 1. Tìm GTNN của biểu thức A = x + y + z + 
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mặt phẳng với hệ tọa độ Oxy, cho DABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x - y + 11 = 0, x + y - 1 = 0. Tìm tọa độ các đỉnh B, C
	2/ Tính tổng S = biết rằng 
Câu V.b: (2 điểm) 1/ Giải hệ phương trình: 
2/ Cho hình tam giác đều có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 450. Tính thể tích hình chóp đã cho.
Đề số 8
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 1/ Khảo sát hàm số: y = (C)
	2/ Gọi d là đường thẳng đi qua A(3; 1) và có hệ số góc m. Tìm m để d cắt đồ thị (C) tại 2 điểm phân biệt
Câu II: (2đ) 1/ Giải phương trình: 4(sin4x + cos4x) + sin4x - 2 = 0
	2/ Giải phương trình: = x - 4
Câu III: (2đ) Trong kgOxyz, cho hình lăng trụ đứng OAB.O’A’B’ với A(2; 0; 0), B(0; 4; 0), O’(0; 0; 4)
1/ Tìm tọa độ các điểm A’, B’. Viết pt mặt cầu (S) đi qua 4 điểm O, A, B, O’. 
	2/ Gọi M là trung điểm của AB. Mp(P) qua M vuông góc với OA’ và cắt OA, AA’ lần lượt tại N, K. Tính độ dài đoạn KN.
Câu IV: (2đ) 1/ Tính tích phân I = 
	2/ Cho a, b, c là 3 số thực dương. Cmr 
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mặt phẳng với hệ tọa độ Oxy, cho DABC có đỉnh B(1; 3), đường cao AH và trung tuyến AM có pt lần lượt là: x - 2y + 3 = 0, y = 1. Viết pt đường thẳng AC.
	2/ Chứng minh rằng: 
Câu V.b: (2 điểm) 1/ Giải hệ phương trình: 
2/ Cho hình S.ABC có SA ^ (ABC), DABC vuông tại B, SA = AB = a, BC = 2a. Gọi M, N lần lượt là hình chiếu vuông góc của A trên SB và SC. Tính diện tích DAMN theo a.
Đề số 9
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 1/ Khảo sát hàm số: y = (C)
	2/ Gọi d là đường thẳng đi qua I(2; 0) và có hệ số góc m. Định m để d cắt đồ thị (C) tại 2 điểm phân biệt A và B sao cho I là trung điểm của đoạn AB.
Câu II: (2đ) 1/ Giải phương trình: cosx.cos2x.sin3x = sin2x
	2/ Giải bất phương trình: 
Câu III: (2 đ) Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho hình lập phương ABCD.A’B’C’D’ với A’(0;0;0), B’(0;2;0), D’(2;0;0). Gọi M,N, P, Q theo thứ tự là trung điểm của các đoạn D’C’, C’B’, B’B, AD.
1/ Tìm tọa độ hình chiếu của C lên AN.
2/ CMR hai đường thẳng MQ và NP cùng nằm trong một mặt phẳng và tính diện tích tứ giác MNPQ.
HD: GT Þ C’(2;2;0), A(0;0;2), B(0;2;2), D(2;0;2), C(2;2;2)
Câu IV: (2đ) 1/ Tìm các đường tiệm cận của đồ thị hàm số y = 
	2/ Cho a, b, c là 3 số thực dương thỏa điều kiện a + b + c = 1. Cmr 
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mpOxy, cho elip (E): và đường thẳng d: x - y + 2 = 0. Đường thẳng d cắt elip (E) tại 2 điểm B, C. Tìm điểm A trên elip (E) sao cho DABC có diện tích lớn nhất.
	2/ Trên các cạnh AB, BC, CD, DA của hình vuông ABCD lần lượt lấy 1, 2, 3, n điểm phân biệt khác A, B, C, D. Tìm n biết số tam giác có 3 đỉnh lấy từ n + 6 điểm đã chọn là 439. 
HD: Số tam giác được lập từ n + 6 điểm đã chọn là 
Câu V.b: (2 điểm) 1) Giải phương trình : 
	2) Cho khối chóp S.ABC có đáy là tam giác ABC vuông tại B. Biết SA vuông góc với mặt phẳng (ABC). AB = a, BC = a và SA = a. Một mặt phẳng qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
ĐỀ SỐ 10
Câu1: Cho hàm số : 
 a/Khảo sát và vẽ đồ thị của hàm số khi m = 0
 b/Tì ... hứng minh rằng phương trình
 3.cos2x+3m.cosx-2m = 0 luôn có ngiệm trong khoảng: với mọi mR
GV: Đỗ Minh Quang –THPT Phước Bình 
 Tháng 6 mùa thi !
ĐỀ THI THỬ SỐ 13 
Thời gian: 180 phút
Câu1: 
 Cho hàm số : 
 a/Khảo sát và vẽ đồ thị (C)của hàm số khi m =1
 b/Với giá trị nào của m thì hàm số đồng biến trên 
 c/Tìm điểm M trên (C) sao cho khoảng cách từ M đến (d): bé nhất
Câu2: 
 a/Giải phương trình sau: 
 b/Cho phương trình :
 Tìm m để phương trình trên có nghiệm
Câu3 
 1/Viết số phức sau đây dưới dạng lượng giác : ; 
 2/Trong không gian (Oxyz) , cho mặt phẳng (P):; 
 Và mặt cầu (S): 
 a/Chứng minh rằng (P) cắt (S) theo giao tuyến là đường tròn (C)
 Xác định tâm và tính bán kính của đường tròn
 b/Chứng minh rằng (d) : chứa trong (P). Viết phương trình 
 đường thẳng (d’) cùng phương D và tiếp xúc với (C)
Câu4 
a/ Tính tích phân: 
b/ Giải pt:
Câu5: : Chứng minh rằng phương trình: x4 + x3 + x2 + x - 1 = 0 có 1 nghiệm dương duy nhất
 ĐỀ THI THỬ SỐ 14 
Thời gian: 180 phút
Câu1: 
 Cho hàm số 
 a/ Khảo sát và vẽ đồ thị (C) của hàm số 
 b/ Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến qua M(-1;0) 
 c/ Tìm m để đường thẳng (d) : y = 2x+m cắt đồ thị (C) tại 2 điểm phân biệt cách đều 
 đường thẳng (d’):x+y+1=0
Câu2: 
 a/Giải phương trình sau: 
 b/Tìm m để hệ phương trình sau có nghiêm: 
Câu3 
 1/Trong mặt phẳng (Oxy) , cho hình thoi ABCD có: A(0;2) , B(4;5) và giao điểm 
 của 2 đường chéo nằm trên (d):x-y-1=0 . Hãy tìm toạ độ của C và D
 2/Trong không gian (Oxyz) , cho mặt phẳng (P):; 
 và 2 điểm A(1;-1;1) , B(3;1;0) 
 a/Lập phương trình đường thẳng d thoả mản : d nằm trong mp(P) , 
 và d đi qua giao điểm của AB và mp(P)
 b/Tìm điểm C trong mp(P) sao cho CA = CB và 
Câu4 
a/ Tính tích phân: 
b/ Giải pt: 
 ( Hoặc giải pt : )
Câu5: a/ T ìm s ố ph ức Z tho ả m ản đ ồng th ời 2 đi ều ki ện sau :
 1/ là số ảo 2/ là số thực
 b/ Cho 3 số thực dương x,y,z >o thoả : .Tìm GTNN của A = 
ĐỀ THI THỬ SỐ 15
Thời gian: 180 phút
Câu1: 
 Cho hàm số : (1) 
 a/Khảo sát và vẽ đồ thị (C)của hàm số (1) khi m =1
 b/ Tìm trên đường thẳng(d): y = 2 điểm M mà qua M vẽ được 2 tiếp tuyến tạo với 
 nhau 1 góc 450 
 b/Chứng minh rằng hàm số (1) luôn có cực đại và cực tiểu với mọi giá trị của m
 Tìm m để : (yCĐ)2 = 2.yCT
Câu2: 
 1/Giải phương trình sau: 
 2/Cho bpt : (1)
 a.Giải bpt(1) khi m = 1
 b.Tìm m để bpt(1) có nghiệm
 3/ Giải hpt sau: 
Câu3 
 1/Xếp ngẫu nhiên 6 học sinh ( 3 nam và 3 nữ ) vào 7 vị trí trên một bàng dài . Tính xác suất để 3 học sinh nam 
 ngồi liền nhau và 3 học sinh nữ ngồi liền nhau.
 2/Trong mặt phẳng (P) cho tam giác ABC đều cạnh a.Trên các nữa đường thẳng 
 vuông góc với (P) tại B và C cùng phía với (P) lấy các điểm D,E sao cho:
 ; 
 a.Tính chu vi của tam giác ADE
 b.Gọi M là giao điểm của ED và BC. Chứng minh rằng :
 c.Gọi H là trung điểm của BC, N là giao điểm của DH và EC.
 Chứng minh rằng : và 
Câu4 Tính tích phân: 
Câu5: Cho nhị thức :
 Tìm hệ số bé nhất và lớn nhất trong khai triển nhị thức trên
ĐỀ THI THỬ SỐ 16
Thời gian: 180 phút
Câu1: 
 Cho hàm số : (1) 
 a/Khảo sát và vẽ đồ thị (C) của hàm số (1) 
 b/ Tìm trên đồ thị (C) 2 điểm M1 và M2 đối xứng nhau qua 
Câu2: 
 1/Giải phương trình sau: 
 2/Giải bpt : 
 3/ Tìm m để bất phương trình sau có nghiệm trong [0;1]: 
Câu3 
 1/Trong mặt phẳng (Oxy) , cho tam giác ABC có (AB): x+y+1 = 0
 (AC): x-2y+2 = 0. Điểm D nằm trên đường thẳng (d): x-y = 0 và D chia đoạn 
 thẳng BC theo tỷ số k=-2 . BC đi qua M (1;1)
 Tìm toạ độ các đỉnh của tam giác ABC
 2/Trong không gian (Oxyz) , cho 2 mặt phẳng (P): 2y-z-3 = 0 và (Q):x-3y+z+5=0 
 a/Viết ptmp() qua M(1;-2;1) đồng thời vuông góc với 2 mặt phẳng trên
 b/Viết phương trình của mặt cấu (S) có tâm I nằm trên đường thẳng 
 (d): và mặt cầu (S) tiếp xúc với 2 mặt phẳng (P) ; (Q)
Câu4 
a/Tính tích phân: 
b/Hãy tìm hệ số a10 trong khai triển nhị thức sau:
 (1 + x + x3 + x4 )4 = a0 + a1x + a2x2 +.+ a16x16
Câu5: 
 a/Cho 3 số x,y,z thoả : 
 Tìm GTLN và GTNN của biểu thức sau: Q = x2+y2+z2
 b/ Tính giới hạn 
ĐỀ THI THỬ SỐ 17
Thời gian: 180 phút
Câu1: 
 Cho hàm số : (1) 
 a/Khảo sát và vẽ đồ thị (C) của hàm số (1) 
 b/Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến qua M(0;1)
 c/Đường thẳng d qua I(1;0) và có hệ số góc k . Tìm k để d cắt (C) tại 2 điểm phân 
 biệt A,B mà độ dài đoạn thẳng AB bé nhất
Câu2: 
 1/Giải phương trình sau: 
 2/Giải bpt : 
 3/ Giải phương trình : 
Câu3 :
 1/Trong mặt phẳng (Oxy) , cho Elíp (E):
 Xác định toạ độ 4 đỉnh của hình vuông ABCD biết 4 đỉnh nằm trên (E)
 2/Trong không gian (Oxyz) , cho 2 đường thẳng 
 và 
 a/Chứng minh rằng d1 và d2 cắt nhau.Viết ptmp(P) chứa 2 đường thẳng này
 b/Viết phương trình đường phân giác của góc nhọn tạo bởi d1 và d2 
Câu4:
a/Tính tích phân: 
b/Có thể lập được bao nhiêu số tự nhiên có 5 chử số đôi một khác nhau, trong đó
có 2 chử số chẳn và 3 chử số lẽ mà 2 chử số chẳn không đứng kề nhau
Câu5: Tính các góc của tam giác ABC biết rằng:
ĐỀ THI THỬ SỐ 18
Thời gian: 180 phút
Câu1: 
 Cho hàm số : (1) 
 a/Khảo sát và vẽ đồ thị của hàm số (1) khi m = 0
 b/ Tìm m để đồ thị của hàm số (1) cắt Ox tại 2 điểm phân biệt . Chứng minh rằng :
 khi đó tích 2 hệ số góc của hai tiếp tuyến của đồ thị hàm số (1)là một số không đổi
Câu2: 
 1/Giải phương trình sau: 
 2/Giải bpt : 
 3/ Cho bất phương trình : (1)
 a/Giải bất phương trình (1) khi m = -2
 b/Tìm m để bất phương trình (1) nghiệm đúng với mọi x thuộc [0;2]
Câu3 
 1/Viết phương trình tiếp tuyến chung của hai đường tròn:
 2/Cho hình chóp đều S.ABC có cạnh đáy bẳng a , cạnh bên hợp với mặt đáy một 
 góc bằng 600 . Gọi là mặt phẳng chứa AB và vuông góc với SC.
 a/Mặt phẳngchia khối chóp S.ABC thành 2 phần .Tính thể tích của mổi phần 
 b/Tính khoảng cách giữa 2 đường thẳng SA và CM ( M là trung điểm của AB)
 c/Xác định tâm và tính bán kính của mặt cầu ngoại tiếp tứ diện SMBC 
Câu4: 
a/Tính tích phân: 
b/Tính tổng :A = ( ) 
Câu5: 
 Cho hai số thực a và b thoả : . Chứng minh rằng phương trình sau có 
 nghiệm duy nhất :
ĐỀ THI THỬ SỐ 19
Thời gian: 180 phút
Câu1: 
 Cho hàm số : (1) 
 a/Khảo sát và vẽ đồ thị của hàm số (1) khi m =1
 b/ Tìm m để đồ thị của hàm số (1) có 2 điểm cực trị nằm cùng phía đối với Ox
Câu2: 
 1/Giải phương trình sau: 
 2/Giải pt : 
 3/ Giải phương trình :
Câu3 :
 1/Cho Elíp (E):
 Tìm m để (d’): y = x+m cắt (E) tại 2 điểm phân biệt A,B mà OAOB
 2/Trong không gian (Oxyz) , cho 2 đường thẳng 
 và 
 a/Chứng minh rằng d1 và d2 chéo nhau.Viết ptmp(P) chứa d1 và // d2
 b/Tìm A trên d1 và B trên d2 sao cho AB ngắn nhất
Câu4 :
a/Tính tích phân: 
b/Từ 5 số : 0,1,2,3,4 lập được bao nhiêu số có 4 chử số khác nhau trong đó tổng của chử số đầu và số cuối bằng tổng 2 số đứng giữa
Câu5: 
 a/Cho 3 số a,b,c > 0 thoả :a + b + c 3
 Chứng minh rằng: 
 b/Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , chiều cao SA = 2a . Mặt phẳng (P) song song với 
 mặt đáy (ABCD) và cắt hình chóp theo thiết diện là tứ giác MNPQ . M nằm trên SA , đặt AM = x ( 0 < x < a) . 
 Xét hình trụ có đáy là đường tròn ngoại tiếp tứ giác MNPQ . Tính thể tích khối trụ trên , tìm x để thể tích này đạt 
 giá trị lớn nhất .
 ĐỀ THI THỬ SỐ 20
Thời gian: 180 phút
Câu1: (2điểm)
 Cho hàm số : (C) 
 a/Khảo sát và vẽ đồ thị (C) của hàm số 
 b/ Tìm m để phương trình sau có 6 nghiệm phân biệt
Câu2: (2,5 điểm) 
 1/Giải phương trình sau: 
 2/Tìm m để phương trình sau có nghiệm : (1)
 3/ Giải hệ phương trình :
Câu3 (3 điểm)
 câu1:Cho đường tròn (C): x2 + y2 + 2x- 4y - 4 =0
 a/Viết pttt của (C) biết tiếp tuyến đi qua A(3;5)
 b/Viết phương trình đường thẳng đi qua 2 tiếp điểm , tính độ dài đoạn thẳng 
 nối 2 tiếp điểm
 câu2:a/Cho đường thẳng (tR)
 Viết ptđt (d’) qua M(-4,-2,4) đồng thời vuông góc và cắt d
 b/Trong không gian (Oxyz), cho S(0,0,1); A(1,1,0) . Hai điểm M(m,0,0) và 
 N(0,n,0) sao cho : m + n = 1 .
 + Chứng minh rằng thể tích khối chóp S.OMAN không phụ thuộc vào m , n
 + Tính khoảng cách từ A đến (SMN). Khi đó, chứng minh rằng (SMN) 
 luôn tiếp xúc với một mặt cầu cố định
Câu4 (1,5điểm)
a/Tính tích phân: 
b/Tìm hệ số lớn nhất trong các hệ số của khai triển : 
Câu5(1điểm) : 
 Cho 2 số x,y thay đổi . Tìm giá trị nhỏ nhất của biểu thức 
 ĐÁP ÁN ĐỀ 20
Câu1:b/ Ta có: 
 Từ đó suy ra đồ thị của hàm số (C’) ::gồm 2 phần
-Phần1:giữ nguyên phần đồ thị (C) nằm phía trên trục hoành ( có điểm chung với trục hoành)
-Phần1:lấy đối xứng của phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành (lên trên trục Ox)
* Sau đó dùng đồ thị để suy ra.3 < m < 9
Câu2: 1/ Biến đổi : sin3x + cos3x = (sinx+cosx)(sin2x-sinx.cosx +cos2x) = (sinx+cosx)(1 – sinx.cosx)
 và sin2x = 2sinx.cosx , sau đó đưa phương trình về dạng:
 (sinx+cosx)(1 – sinx.cosx) = 2sinx.cosx +sinx + cosx
 đặt t = sinx + cosx () ; suy ra sinx.cosx = 
2/ Điều kiện: ; bình phương 2 vế phương trình (1) đưa về dạng :
 (*) ; đặt t = 
Ta có : ; hơn nữa t = = (BĐT Cô Si)
Suy ra : ; tóm lại ta có : . Khi đó pt(*) viết tại : -t2+2t+9 = m (2)
Pt(1) có nghiệm khi pt(2).., đặt f(t)=: -t2+2t+9 
3/ Đặt: (u;v0) ; Đưa hệ phương trình đã cho về : 
Trừ vế theo vế 2 phương trình (1) và (2) ( Hệ đối xứng loại 2 )
Câu3: 1b/ *Dùng trục đẳng phương 
*Gọi M và N là 2 tiếp điểm tương ứng, J là trung điểm của MN, I là tâm đường tròn
 +Xét tam giác vuông IMA tại M có MJ là đường cao, suy ra IJ.IA = IM2 IJ=?
 +Lại xét trong tam giác vuông IMJ tại J suy ra MJ , vậy MN = 2MJ =?
 2a/* Cách 1: Tìm hình chiếu M’của M lên (d) , sau đó viết ptdt qua M và M’ ( là đt cần tìm)
 * Cách2 :Viết ptmp(P) chứa M và (d);Viết ptmp(Q) qua M và vuông góc với d
 Vậy d’ là giao tuyến của (P) và (Q)
 2b/+Áp dụng công thức : VS.OMAN = . SOMAN.SO (vẽ hình vào)
 = ( 0;0;mn-m-n) = (0;0;mn-1); 
 ( 0 < m;n <1 suy ra : m.n < 1) SOMAN = SOMN + SAMN = 1/2
 + ; do đó (SMN) tiếp xúc với mặt câu tâm A, bán kính bằng 1
Câu4: a/Đặt t = ex + 1
 b/ Ta có : ,(số hạng tổng quát là :)
 + Hệ số của số hạng tổng quát là : ( )
 + . Ta có 
 * tăng khi :, trong trường hợp này : ( tăng thì cùng chiều)
 * giảm khi :, trong trường hợp này :(giảm thì ngược chiều)
 mà : suy ra : , do đó hệ số lớn nhất cần tìm là: 
 * Nếu đề yêu cầu tìm hệ số bé nhất thì so sánh : và , Hết giấy , HS tự giải câu còn lại ĐỀ THI THỬ SỐ 21
Thời gian: 180 phút
Bài1:
 Cho hàm số : (Cm) 
 a/Khảo sát và vẽ đồ thị (C) của hàm số khi m = 1
 b/ Tìm m để hàm số có CĐ , CT đồng thời khoảng cách từ điểm cực đại của đồ thị 
 của (Cm) đến tiệm cận xiên của (Cm) bằng 
Bài2: 
 1/Giải phương trình sau: 
 2/Giải bất phương trình : (1)
 3/ Giải phương trình : 
Bài3 
 câu1:Viết phương trìnhđường tròn đi qua 2 điểm A(2;5) ,B(4;1) và tiếp xúc với 
 đường thẳng (d) : 3x-y+9 = 0
 câu2:Cho đường thẳng và mp(P) : 2x+y+z-1=0
 a/Tìm giao điểm A của đường thẳng d và mp(P) . Tính góc tạo bởi d và mp(P)
 b/viết phương trình đường thẳng đi qua A , nằm trong mp(P) và tạo với 
 đường thẳng d một góc bằng : 1/ 30 ? 2/ 45
Bài4 
1/Tính tích phân: a/ b/
2/Chứng minh : 
Bài5: Cho 3 số thực dương a, b và c thoả :ab+bc+ca = abc. chứng minh rằng :

Tài liệu đính kèm:

  • doc10_de_thi_thu_dai_hoc_cuc_hay.doc