Đề ôn thi tốt nghiệp phổ thông trung học năm 2010

Đề ôn thi tốt nghiệp phổ thông trung học năm 2010

 Câu I ( 3,0 điểm ) Cho hàm số y = x-3/ x- 2 có đồ thị (C)

a. Khảo sát sự biến thiên và vẽ đồ thị (C).

b. Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .

 

doc 4 trang Người đăng haha99 Ngày đăng 26/02/2018 Lượt xem 145Lượt tải 0 Download
Bạn đang xem tài liệu "Đề ôn thi tốt nghiệp phổ thông trung học năm 2010", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ ÔN THI TỐT NGHIỆP PHỔ THÔNG TRUNG HỌC NĂM 2010
ĐỀ 4
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .
 Câu II ( 3,0 điểm ) 
Giải bất phương trình 
Tính tìch phân : I = 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn .
Câu III ( 1,0 điểm ) Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng 
 và .
 a. Chứng minh rằng hai đường thẳng vuông góc nhau nhưng không cắt nhau .
 b. Viết phương trình đường vuông góc chung của .
Câu V.a ( 1,0 điểm ) : Tìm môđun của số phức .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng () : 
 và hai đường thẳng ( ) : , ( ) : .
 a. Chứng tỏ đường thẳng () song song mặt phẳng () và () cắt mặt phẳng () .
 b. Tính khoảng cách giữa đường thẳng () và ( ).
 c. Viết phương trình đ th() song song với m phẳng () , cắt đường thẳng () và ( ) lần lượt tại M và N sao cho MN = 3 .
Câu V.b ( 1,0 điểm ) : Tìm nghiệm của phương trình , trong đó là số phức liên hợp của số phức z . 
 . . . . . . . .Hết . . . . . . .
HƯỚNG DẪN ĐỀ 4
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
x
 2 
 +
 +
1 
 1
 b) 1đ Phương trình hoành độ của (C ) và đường thẳng :
 (1) 
 Để (C ) và (d) cắt nhau tại hai điểm phân biệt phương trình (1) có hai nghiệm phân biệt khác 1 
Câu II ( 3,0 điểm ) 
 a) 1đ pt Điều kiện : x > 0 
 (1) 
 So điều kiện , bất phương trình có nghiệm : 
 b) 1đ I = 
 c) 1đ Ta có : 
 + + 
Câu III ( 1,0 điểm ) 
 ¡ 
 ¡ Gọi O , O’ lần lượt là tâm của đường tròn ngoại tiếp 
 thí tâm của mặt cầu (S) ngoại 
 tiếp hình lăng trụ đều ABC.A’B’C’ là trung điểm 
 I của OO’ .
 Bán kính 
 Diện tích : 
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 a) 1đ Thay x.y.z trong phương trình của () vào phương trình của () ta được :
 vô nghiệm .
 Vậy và không cắt nhau .
 Ta có : có VTCP ; có VTCP 
 Vì nên và vuông góc nhau .
 b) 1đ Lấy , 
 Khi đó : 
 MN vuông với 
 là phưong trình đường thẳng cần tìm .
Câu V.a ( 1,0 điểm ) : 
 Vì .
 Suy ra : 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 0,75đ 
 có vtpt 
 Do và nên () // () .
 Do nên () cắt () .
 b) 0,5 đ Vì 
 c) 0,75đ phương trình 
 Gọi ; 
 Theo đề : . 
 Vậy 
 Câu V.b ( 1,0 điểm ) : 
 Gọi z = a + bi , trong đó a,b là các số thực . ta có : và 
 Khi đó : Tìm các số thực a,b sao cho : 
 Giải hệ trên ta được các nghiệm (0;0) , (1;0) , , .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Tài liệu đính kèm:

  • docTuyen tap Toan TN2010 so 4.doc