Chuyên đề: Định lí Lagrange và ứng dụng

Chuyên đề: Định lí Lagrange và ứng dụng

Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau:

 I. Sử dụng định lí Lagrange chứng minh bất đẳng thức.

 II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm.

 III. Sử dụng định lí Lagrange giải phương trình.

 

doc 6 trang Người đăng ngochoa2017 Lượt xem 12184Lượt tải 4 Download
Bạn đang xem tài liệu "Chuyên đề: Định lí Lagrange và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề:
ĐỊNH LÍ LAGRANGE VÀ ỨNG DỤNG
A. GIỚI THIỆU
Định lí Lagrange được phát biểu như sau: Cho hàm số F(x) liên tục trên [a,b] và có đạo hàm trong khoảng (a,b) thì luôn tồn tại   sao cho:
Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau:
            I. Sử dụng định lí Lagrange chứng minh bất đẳng thức.
            II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm.
            III. Sử dụng định lí Lagrange giải phương trình.
B. NỘI DUNG 
I. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH BẤT ĐẲNG THỨC.
* Phương pháp 
            Từ định lí Lagrange , nếu thì:
            Vậy
            Từ định lí Lagrange để áp dụng được kết quả trên, điều quan trọng nhất là xác định được hàm số F(x). 
*Ví dụ minh họa
VD1: CMR nếu   th×: 
Giải
Bất đẳng thức đã cho tương đương với: 
Xét hàm số: liên tục trên, và có đạo hàm trong khoảng . Theo định lí Lagrange luôn tồn tại   sao cho:   
Ta có:
(đpcm).
NX: Điều quan trọng hơn cả trong bài toán này là chúng ta nhận ra được hàm số F(x) qua việc biến đổi tương đương BPT đã cho. Ta xét VD 2  
VD 2: Cho . Chứng minh: 
Giải
BĐT đã cho tương đương với: 
Đặt với 
Ta có: 
            AD định lí Lagrange đối với hàm số: trên , thì tồn tại sao cho:
. Từ (1) suy ra: 
Suy ra:   (đpcm). 
NX: Bài này khó hơn bài trên ở chỗ phải tinh ý lấy logaNepe hai vế mới nhận ra đựơc hàm số f (x). 
VD 3: Cho a<b<c. CMR: 
Giải
Xét hàm số: 
Theo định lí Lagrange tồn tại sao cho:
Ta thấy: 
Từ (1) 
Do đó, từ . Suy ra:
II. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM.
*Phương pháp: 
            Từ định lí Lagrange, nếu F(b)-F(a)=0 thì tồn tại sao cho:
                        phương trình   có nghiệm thuộc 
            Để áp dụng được định lí Lagrange phải nhận ra hàm số F (x) (thực ra nó là nguyên hàm của hàm số f(x)).
            Dạng bài toán này làm theo các bước sau:
            Bước 1: Xác định hàm số F(x) liên tục trên [a,b] và có đạo hàm trên (a,b), thoả mãn:
                        a. F'(x)=f(x).
                        b. F(b)-F(a)=0.
            Bước 2: Khi đó tồn tại sao cho:
                        phương trình f(x)= 0 có nghiệm .
*Ví dụ minh hoạ:        
VD1: CMR phương trình:
            có nghiệm với mọi a,b,c.
Giải
Xét hàm số: 
Dễ dàng nhận thấy:
Khi đó tồn tại sao cho:
            Vậy phương trình đã cho có nghiệm thuộc khoảng .
VD 2: Giả sử: . CMR phương trình:
                        có nghiệm thuộc khoảng (0, 1)     
Giải
Xét hàm số: liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có:
Khi đó tồn tại sao cho:
Vậy phương trình đã cho có nghiệm thụôc khoảng (0,1). 
Từ VD2 ta có thể giải được bài toán sau: 
VD3: Giả sử: . CMR phương trình:
            có nghiệm thuộc khoảng (0,1).
Giải
Xét hàm số: 
Nhận thấy, F(x) liên tục trên [0,1] và có đạo hàm trong khoảng (0,1).
Ta có:
Khi đó tồn tại sao cho:
V ì n ên ta c ó: .
V ậy ph ư ơng tr ình đ ã cho c ó nghi ệm thu ộc kho ảng (0,1). 
III. SỬ DỤNG ĐỊNH LÍ LAGRANGE GI ẢI PH Ư ƠNG TR ÌNH.
* Phương pháp: 
            Đ ể áp d ụng đ ịnh l í Lagrange vào việc giải phương trình ta thực hiện theo các bước sau đây:
            Bước 1: Gọi l à nghi ệm c ủa ph ư ơng tr ình.
            Bước 2: Biến đổi phương trình về dạng thích hợp , từ đó chỉ ra hàm số liên tục trên [a,b] và có đạo hàm trên khoảng (a,b).
            Khi đó theo định lí Lagrange tồn tại sao cho:
                                                                                (*)
            Bước 3: Giải (*), ta xác định được .
            Bước 4: Thử lại
* Ví dụ minh họa:
VD 1: Giải phương trình: .
Giải
            Gọi là nghiệm của phương trình đã cho. Ta được:
            (1)
            Xét hàm số: . Khi đó:
            (1) 
            Vì F(t) liên tục trên [3,4] và có đạo hàm trong khoảng (3,4), do đó theo định lí Lagrange tồn tại sao cho:
Thử lại và thấy đúng.
Vậy phương trình có hai nghiệm x=0 và x=1. 
VD 2: Giải phương trình: 
Giải
            Gọi là nghiệm của phương trình đã cho, ta có:
            (2).
            Xét hàm số: , khi đó:
            Vì F(t) liên tục trên [2,3] và có đạo hàm trên (2,3), do đó theo định lí Lagrange luôn tồn tại sao cho:
Thử lại thấy đúng. vậy phương trình có hai họ nghiệm và .        
C. BÀI TẬP ÁP DỤNG 
   1. CMR nếu x>y> 0 thì 
   2. CMR phương trình:
   3. Giải các phương trình sau:
         1. 
         2. 

Tài liệu đính kèm:

  • docOn thi DHDINH LI LAGRANGE VA UNG DUNG.doc